Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_4_a6, author = {G. M. Sevastyanov}, title = {Antiplane axisymmetric elastic-plastic shear in an isotropic hardening material}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {740--758}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a6/} }
TY - JOUR AU - G. M. Sevastyanov TI - Antiplane axisymmetric elastic-plastic shear in an isotropic hardening material JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 740 EP - 758 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a6/ LA - ru ID - VSGTU_2024_28_4_a6 ER -
%0 Journal Article %A G. M. Sevastyanov %T Antiplane axisymmetric elastic-plastic shear in an isotropic hardening material %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 740-758 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a6/ %G ru %F VSGTU_2024_28_4_a6
G. M. Sevastyanov. Antiplane axisymmetric elastic-plastic shear in an isotropic hardening material. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 740-758. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a6/
[1] Shutov A. V., Kaygorodtseva A. A., “Sample shapes for reliable parameter identification in elasto-plasticity”, Acta Mech., 231 (2020), 4761–4780 | DOI
[2] Arutyunyan N. Kh., Radayev Yu. N., “Elastoplastic torsion of a cylindrical rod for finite deformations”, J. Appl. Math. Mech., 53:6 (1989), 804–811 | DOI | Zbl
[3] Sevastyanov G. M., Burenin A. A., “Finite strain upon elastic-plastic torsion of an incompressible circular cylinder”, Dokl. Phys., 63 (2018), 393–395 | DOI | DOI
[4] Sevastyanov G. M., Bormotin K. S., “Finite-strain elastic-plastic torsion: Analytical and FEM modeling for nonmonotonically hardening polymers”, PNRPU Mechanics Bulletin, 2023, no. 3, 124–136 | DOI
[5] Sevastyanov G. M., “Finite-strain elastic-plastic torsion: Comparison of von Mises and Tresca materials”, Materials Physics and Mechanics, 51:2 (2023), 140–150 | DOI
[6] Xue Z., Pontin M. G., Zok F. W., Hutchinson J. W., “Calibration procedures for a computational model of ductile fracture”, Eng. Fract. Mech., 77:3 (2010), 492–509 | DOI
[7] Tvergaard V., Hutchinson J. W., “Numerical simulation of cropping”, J. Appl. Mech., 81:7 (2014), 071002 | DOI
[8] Aleksandrov S. E., Goldstein R. V., “Motion of a rigid bar in a rigid-viscoplastic medium: The influence of the model type on the solution behavior”, Mech. Solids, 50:4 (2015), 389–396 | DOI
[9] Alexandrov S., Date P., “An alternative interpretation of axial friction test results for viscoplastic materials”, Mech. Time-Depend. Mater., 22 (2018), 259–271 | DOI
[10] Burenin A. A., Kovtanyuk L. V., Mazelis A. L., “Development of a rectilinear axisymmetric viscoplastic flow and elastic aftereffect after its stop”, J. Appl. Mech. Tech. Phys., 51:2 (2010), 261–268 | DOI | Zbl
[11] Liu I. S., “A note on the Mooney–Rivlin material model”, Continuum Mech. Thermodyn., 24 (2012), 583–590 | DOI | Zbl
[12] Kellermann D. C., Attard M. M., “An invariant-free formulation of neo-Hookean hyperelasticity”, ZAMM, 96:2 (2016), 233–252 | DOI | Zbl
[13] Korobeynikov S. N., “Families of Hooke-like isotropic hyperelastic material models and their rate formulations”, Arch. Appl. Mech., 93 (2023), 3863–3893 | DOI
[14] Lee E. H., “Elastic-plastic deformation at finite strains”, J. Appl. Mech., 36:1 (1969), 1–6 | DOI | Zbl
[15] Levitas V. I., Large deformation of materials with complex rheological properties at normal and high pressure, Nova Science Publ., New York, 1996
[16] Feng B., Levitas V. I., Hemley R. J., “Large elastoplasticity under static megabar pressures: Formulation and application to compression of samples in diamond anvil cells”, Int. J. Plasticity, 84 (2016), 33–57 | DOI
[17] Rogovoi A. A., Formalizovannyi podkhod k postroeniiu modelei mekhaniki deformiruemogo tverdogo tela. Chast' II [Formalized Approach to Constructing Models of the Mechanics of a Deformable Solid. Part II], Izhevskii Institut Komp'iuternykh Issledovanii, Moscow; Izhevsk, 2023, 318 pp. (In Russian)
[18] Sevastyanov G. M., Begun A. S., Burenin A. A., “Finite-strain elastic-plastic circular shear in materials with isotropic hardening”, Prikl. Mat. Mekh., 88:2 (2024), 313–340 (In Russian) | DOI