The influence of anisotropy and strength-differential effect on the design of equi-strength rotating disk of variable thickness
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 701-720.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the calculation of the geometry of an equi-strength annular disk taking into account the anisotropy and strength differential effect. The disk is under centrifugal forces and tractions on the inner and outer surfaces. The problem statement is based on the anisotropic elasticity theory and the plane stress assumption. General quadratic failure criterion is used, the only requirement for which is ellipticity. In particular cases, the used condition is reduced to many known strength criteria (Tsai–Wu, Hill, Drucker–Prager, von Mises, etc.). The governing system of equations consists of the compatibility equation, the equilibrium equation and the condition of constant equivalent stress. This condition is satisfied by a trigonometric substitution and an introduced auxiliary function. The two remaining equations are solved sequentially in an implicit form, in which the auxiliary function is treated as independent variable. The found analytical solution allows to construct the geometry of the disk (profile and inner radius of the disk) of equal strength, and also to determine the distribution of stresses in it. It is established that the solution may not exist and be non-unique. In particular cases, the solution is reduced to solutions for many known failure criteria, as well as to the classical solution of Rabotnov. Comparison of calculations obtained for the Tsai–Wu and von Mises criteria showed that anisotropy and different strengths under tension and compression can have a significant effect on the geometry of a disk of equal strength and the stress state in it.
Keywords: rotating disk, equi-strength design, anisotropy, strength differential effect, Tsai–Wu failure criterion
@article{VSGTU_2024_28_4_a4,
     author = {A. N. Prokudin},
     title = {The influence of anisotropy and strength-differential effect on the design of equi-strength rotating disk of variable thickness},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {701--720},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a4/}
}
TY  - JOUR
AU  - A. N. Prokudin
TI  - The influence of anisotropy and strength-differential effect on the design of equi-strength rotating disk of variable thickness
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2024
SP  - 701
EP  - 720
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a4/
LA  - ru
ID  - VSGTU_2024_28_4_a4
ER  - 
%0 Journal Article
%A A. N. Prokudin
%T The influence of anisotropy and strength-differential effect on the design of equi-strength rotating disk of variable thickness
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2024
%P 701-720
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a4/
%G ru
%F VSGTU_2024_28_4_a4
A. N. Prokudin. The influence of anisotropy and strength-differential effect on the design of equi-strength rotating disk of variable thickness. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 701-720. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a4/

[1] Cherepanov G. P., “Optimum shapes of elastic bodies: Equistrong wings of aircrafts and equistrong underground tunnels”, Phys. Mesomech., 18:4 (2015), 391–401 | DOI

[2] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela [Mechanics of a Deformable Rigid Body], Nauka, Moscow, 1988, 712 pp. (In Russian) | Zbl

[3] Rabotnov Yu. N., Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics, 7, North-Holland Publ. Co., Amsterdam, London, 1969, xiv+822 pp. | Zbl

[4] Gontarovskii V. P., Chebaevskii B. P., “Profile design of uniform-strength disk by the mises strength rule”, Strength Mater., 5:10 (1973), 1257–1259 | DOI

[5] Kai-yuan Y., Ping L., “Equi-strength design of nonhomogeneous variable thickness high speed rotating disk under steady temperature field”, Appl. Math. Mech., 7:9 (1986), 825–834 | DOI | Zbl

[6] Hein K., Heinloo M., “The design of nonhomogeneous equi-strength annular discs of variable thickness under internal and external pressures”, Int. J. Solids Struct., 26:5–6 (1990), 617–630 | DOI | Zbl

[7] Gau C.-Y., Manoochehri S., “Optimal design of a nonhomogeneous annular disk under pressure loadings”, J. Mech. Des., 116:4 (1994), 989–996 | DOI

[8] Alexandrov S., Rynkovskaya M., Jeng Y.-R., “Design of equi-strength annular disks made of functionally graded materials”, Mech. Based Des. Struct. Mach., 52:9 (2023), 7045–7062 | DOI

[9] Danfelt E. L., Hewes S. A., Chou T.-W., “Optimization of composite flywheel design”, Int. J. Mech. Sci., 19:2 (1977), 69–78 | DOI

[10] Pardoen G. C., Nudenberg R. D., Swartout B. E., “Achieving desirable stress states in thick rim rotating disks”, Int. J. Mech. Sci., 23:6 (1981), 367–382 | DOI

[11] Jain R., Ramachandra K., Simha K. R. Y., “Rotating anisotropic disc of uniform strength”, Int. J. Mech. Sci., 41:6 (1999), 639–648 | DOI | Zbl

[12] Nie G. J., Batra R. C., “Stress analysis and material tailoring in isotropic linear thermoelastic incompressible functionally graded rotating disks of variable thickness”, Compos. Struct., 92:3 (2010), 720–729 | DOI

[13] Nie G. J., Zhong Z., Batra R. C., “Material tailoring for orthotropic elastic rotating disks”, Compos. Sci. Technol., 71:3 (2011), 406–414 | DOI

[14] Bhavikatti S. S., Ramakrishnan C. V., “Optimum shape design of rotating disks”, Comput. Struct., 11:5 (1980), 397–401 | DOI | Zbl

[15] Sandgren E., Ragsdell K. M., “Optimal flywheel design with a general thickness form representation”, J. Mech. Trans. Automation, 105:3 (1983), 425–433 | DOI

[16] Genta G., Bassani D., “Use of genetic algorithms for the design of rotors”, Meccanica, 30:6 (1995), 707–717 | DOI | Zbl

[17] Arslan M. A., “Flywheel geometry design for improved energy storage using finite element analysis”, Mater. Des., 29:2 (2008), 514–518 | DOI

[18] Dems K., Turant J., “Two approaches to the optimal design of composite flywheels”, Eng. Optim., 41:4 (2009), 351–363 | DOI

[19] Ghotbi E., Dhingra A. K., “A bilevel game theoretic approach to optimum design of flywheels”, Eng. Optim., 44:11 (2012), 1337–1350 | DOI

[20] Hiroshima N., Hatta H., Koyama M., et al., “Optimization of flywheel rotor made of three-dimensional composites”, Comput. Struct., 131 (2015), 304–311 | DOI

[21] Jiang L., Zhang W., Ma G. J., Wu C. W., “Shape optimization of energy storage flywheel rotor”, Struct. Multidisc. Optim., 55:2 (2017), 739–750 | DOI

[22] Singh P., Chaudhary H., “Optimal shape synthesis of a metallic flywheel using non-dominated sorting Jaya algorithm”, Soft. Comput., 24:9 (2020), 6623–6634 | DOI

[23] Yildirim V., “The best grading pattern selection for the axisymmetric elastic response of pressurized inhomogeneous annular structures (sphere/cylinder/annulus) including rotation”, J. Braz. Soc. Mech. Sci. Eng., 42:2 (2020), 109 | DOI

[24] Kale V., Thomas M., Secanell M., “On determining the optimal shape, speed, and size of metal flywheel rotors with maximum kinetic energy”, Struct. Multidisc. Optim., 64:3 (2021), 1481–1499 | DOI

[25] Kale V., Aage N., Secanell M., “Augmented Lagrangian approach for multi-objective topology optimization of energy storage flywheels with local stress constraints”, Struct. Multidisc. Optim., 66:11 (2023), 231 | DOI

[26] Kale V., Aage N., Secanell M., “Stress constrained topology optimization of energy storage flywheels using a specific energy formulation”, J. Energy Storage, 61 (2023), 106733 | DOI

[27] Yan C., Liu C., Du H., et al., “Topology optimization of turbine disk considering maximum stress prediction and constraints”, Chin. J. Aeronaut., 36:8 (2023), 182–206 | DOI

[28] Madan R., Bhowmick S., “Optimum FG Rotating Disk of Constant Mass: Lightweight and Economical alternatives Based on Limit Angular Speed”, Iran. J. Sci. Technol. Trans. Mech. Eng., 47:3 (2023), 1019–1033 | DOI

[29] Rahman S., Ali M., “A novel approach to optimize material distributions of rotating functionally graded circular disk under minimum and prescribed stresses”, Mater. Today Commun., 36 (2023), 106620 | DOI

[30] Abdalla H. M. A., Boussaa D., Sburlati R., Casagrande D., “On the best volume fraction distributions for functionally graded cylinders, spheres and disks – A pseudospectral approach”, Comput. Struct., 311 (2023), 116784 | DOI

[31] Tsai S. W., Wu E. M., “A general theory of strength for anisotropic materials”, J. Compos. Mater., 5:1 (1971), 58–80 | DOI

[32] Gol'denblat I. I., Kopnov V. A., “Strength of glass-reinforced plastics in the complex stress state”, Polymer Mechanics, 1:2 (1965), 54–59 | DOI

[33] Li S., Sitnikova E., Liang Y., Kaddour A.-S., “The Tsai–Wu failure criterion rationalised in the context of UD composites”, Compos. A: Appl. Sci. Manuf., 102 (2017), 207–217 | DOI

[34] Chen X., Sun X., Chen P., et al., “Rationalized improvement of Tsai–Wu failure criterion considering different failure modes of composite materials”, Comput. Struct., 256 (2021), 113120 | DOI

[35] Hill R., “A theory of the yielding and plastic flow of anisotropic metals”, Proc. R. Soc. Lond. A, 193:1033 (1948), 281–297 | DOI | Zbl

[36] Ganczarski A. W., Skrzypek J. J., “Constraints on the applicability range of Hill's criterion: Strong orthotropy or transverse isotropy”, Acta Mech., 225:9 (2014), 2563–2582 | DOI | Zbl

[37] Hu L. W., Marin J., “Anisotropic loading functions for combined stresses in the plastic range”, J. Appl. Mech., 22:1 (1955), 77–85 | DOI

[38] Caddell R. M., Raghava R. S., Atkins A. G., “A yield criterion for anisotropic and pressure dependent solids such as oriented polymers”, J. Mater. Sci., 8:11 (1973), 1641–1646 | DOI

[39] Chen L., Wen W., Cui H., “Generalization of Hill's yield criterion to tension-compression asymmetry materials”, Sci. China Technol. Sci., 56:1 (2013), 89–97 | DOI

[40] Kim J. H., Lee M.-G., Chung K., et al., “Anisotropic-asymmetric yield criterion and anisotropic hardening law for composite materials: Theory and formulations”, Fiber. Polym., 7:1 (2006), 42–50 | DOI