Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_4_a4, author = {A. N. Prokudin}, title = {The influence of anisotropy and strength-differential effect on the design of equi-strength rotating disk of variable thickness}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {701--720}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a4/} }
TY - JOUR AU - A. N. Prokudin TI - The influence of anisotropy and strength-differential effect on the design of equi-strength rotating disk of variable thickness JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 701 EP - 720 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a4/ LA - ru ID - VSGTU_2024_28_4_a4 ER -
%0 Journal Article %A A. N. Prokudin %T The influence of anisotropy and strength-differential effect on the design of equi-strength rotating disk of variable thickness %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 701-720 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a4/ %G ru %F VSGTU_2024_28_4_a4
A. N. Prokudin. The influence of anisotropy and strength-differential effect on the design of equi-strength rotating disk of variable thickness. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 701-720. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a4/
[1] Cherepanov G. P., “Optimum shapes of elastic bodies: Equistrong wings of aircrafts and equistrong underground tunnels”, Phys. Mesomech., 18:4 (2015), 391–401 | DOI
[2] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela [Mechanics of a Deformable Rigid Body], Nauka, Moscow, 1988, 712 pp. (In Russian) | Zbl
[3] Rabotnov Yu. N., Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics, 7, North-Holland Publ. Co., Amsterdam, London, 1969, xiv+822 pp. | Zbl
[4] Gontarovskii V. P., Chebaevskii B. P., “Profile design of uniform-strength disk by the mises strength rule”, Strength Mater., 5:10 (1973), 1257–1259 | DOI
[5] Kai-yuan Y., Ping L., “Equi-strength design of nonhomogeneous variable thickness high speed rotating disk under steady temperature field”, Appl. Math. Mech., 7:9 (1986), 825–834 | DOI | Zbl
[6] Hein K., Heinloo M., “The design of nonhomogeneous equi-strength annular discs of variable thickness under internal and external pressures”, Int. J. Solids Struct., 26:5–6 (1990), 617–630 | DOI | Zbl
[7] Gau C.-Y., Manoochehri S., “Optimal design of a nonhomogeneous annular disk under pressure loadings”, J. Mech. Des., 116:4 (1994), 989–996 | DOI
[8] Alexandrov S., Rynkovskaya M., Jeng Y.-R., “Design of equi-strength annular disks made of functionally graded materials”, Mech. Based Des. Struct. Mach., 52:9 (2023), 7045–7062 | DOI
[9] Danfelt E. L., Hewes S. A., Chou T.-W., “Optimization of composite flywheel design”, Int. J. Mech. Sci., 19:2 (1977), 69–78 | DOI
[10] Pardoen G. C., Nudenberg R. D., Swartout B. E., “Achieving desirable stress states in thick rim rotating disks”, Int. J. Mech. Sci., 23:6 (1981), 367–382 | DOI
[11] Jain R., Ramachandra K., Simha K. R. Y., “Rotating anisotropic disc of uniform strength”, Int. J. Mech. Sci., 41:6 (1999), 639–648 | DOI | Zbl
[12] Nie G. J., Batra R. C., “Stress analysis and material tailoring in isotropic linear thermoelastic incompressible functionally graded rotating disks of variable thickness”, Compos. Struct., 92:3 (2010), 720–729 | DOI
[13] Nie G. J., Zhong Z., Batra R. C., “Material tailoring for orthotropic elastic rotating disks”, Compos. Sci. Technol., 71:3 (2011), 406–414 | DOI
[14] Bhavikatti S. S., Ramakrishnan C. V., “Optimum shape design of rotating disks”, Comput. Struct., 11:5 (1980), 397–401 | DOI | Zbl
[15] Sandgren E., Ragsdell K. M., “Optimal flywheel design with a general thickness form representation”, J. Mech. Trans. Automation, 105:3 (1983), 425–433 | DOI
[16] Genta G., Bassani D., “Use of genetic algorithms for the design of rotors”, Meccanica, 30:6 (1995), 707–717 | DOI | Zbl
[17] Arslan M. A., “Flywheel geometry design for improved energy storage using finite element analysis”, Mater. Des., 29:2 (2008), 514–518 | DOI
[18] Dems K., Turant J., “Two approaches to the optimal design of composite flywheels”, Eng. Optim., 41:4 (2009), 351–363 | DOI
[19] Ghotbi E., Dhingra A. K., “A bilevel game theoretic approach to optimum design of flywheels”, Eng. Optim., 44:11 (2012), 1337–1350 | DOI
[20] Hiroshima N., Hatta H., Koyama M., et al., “Optimization of flywheel rotor made of three-dimensional composites”, Comput. Struct., 131 (2015), 304–311 | DOI
[21] Jiang L., Zhang W., Ma G. J., Wu C. W., “Shape optimization of energy storage flywheel rotor”, Struct. Multidisc. Optim., 55:2 (2017), 739–750 | DOI
[22] Singh P., Chaudhary H., “Optimal shape synthesis of a metallic flywheel using non-dominated sorting Jaya algorithm”, Soft. Comput., 24:9 (2020), 6623–6634 | DOI
[23] Yildirim V., “The best grading pattern selection for the axisymmetric elastic response of pressurized inhomogeneous annular structures (sphere/cylinder/annulus) including rotation”, J. Braz. Soc. Mech. Sci. Eng., 42:2 (2020), 109 | DOI
[24] Kale V., Thomas M., Secanell M., “On determining the optimal shape, speed, and size of metal flywheel rotors with maximum kinetic energy”, Struct. Multidisc. Optim., 64:3 (2021), 1481–1499 | DOI
[25] Kale V., Aage N., Secanell M., “Augmented Lagrangian approach for multi-objective topology optimization of energy storage flywheels with local stress constraints”, Struct. Multidisc. Optim., 66:11 (2023), 231 | DOI
[26] Kale V., Aage N., Secanell M., “Stress constrained topology optimization of energy storage flywheels using a specific energy formulation”, J. Energy Storage, 61 (2023), 106733 | DOI
[27] Yan C., Liu C., Du H., et al., “Topology optimization of turbine disk considering maximum stress prediction and constraints”, Chin. J. Aeronaut., 36:8 (2023), 182–206 | DOI
[28] Madan R., Bhowmick S., “Optimum FG Rotating Disk of Constant Mass: Lightweight and Economical alternatives Based on Limit Angular Speed”, Iran. J. Sci. Technol. Trans. Mech. Eng., 47:3 (2023), 1019–1033 | DOI
[29] Rahman S., Ali M., “A novel approach to optimize material distributions of rotating functionally graded circular disk under minimum and prescribed stresses”, Mater. Today Commun., 36 (2023), 106620 | DOI
[30] Abdalla H. M. A., Boussaa D., Sburlati R., Casagrande D., “On the best volume fraction distributions for functionally graded cylinders, spheres and disks – A pseudospectral approach”, Comput. Struct., 311 (2023), 116784 | DOI
[31] Tsai S. W., Wu E. M., “A general theory of strength for anisotropic materials”, J. Compos. Mater., 5:1 (1971), 58–80 | DOI
[32] Gol'denblat I. I., Kopnov V. A., “Strength of glass-reinforced plastics in the complex stress state”, Polymer Mechanics, 1:2 (1965), 54–59 | DOI
[33] Li S., Sitnikova E., Liang Y., Kaddour A.-S., “The Tsai–Wu failure criterion rationalised in the context of UD composites”, Compos. A: Appl. Sci. Manuf., 102 (2017), 207–217 | DOI
[34] Chen X., Sun X., Chen P., et al., “Rationalized improvement of Tsai–Wu failure criterion considering different failure modes of composite materials”, Comput. Struct., 256 (2021), 113120 | DOI
[35] Hill R., “A theory of the yielding and plastic flow of anisotropic metals”, Proc. R. Soc. Lond. A, 193:1033 (1948), 281–297 | DOI | Zbl
[36] Ganczarski A. W., Skrzypek J. J., “Constraints on the applicability range of Hill's criterion: Strong orthotropy or transverse isotropy”, Acta Mech., 225:9 (2014), 2563–2582 | DOI | Zbl
[37] Hu L. W., Marin J., “Anisotropic loading functions for combined stresses in the plastic range”, J. Appl. Mech., 22:1 (1955), 77–85 | DOI
[38] Caddell R. M., Raghava R. S., Atkins A. G., “A yield criterion for anisotropic and pressure dependent solids such as oriented polymers”, J. Mater. Sci., 8:11 (1973), 1641–1646 | DOI
[39] Chen L., Wen W., Cui H., “Generalization of Hill's yield criterion to tension-compression asymmetry materials”, Sci. China Technol. Sci., 56:1 (2013), 89–97 | DOI
[40] Kim J. H., Lee M.-G., Chung K., et al., “Anisotropic-asymmetric yield criterion and anisotropic hardening law for composite materials: Theory and formulations”, Fiber. Polym., 7:1 (2006), 42–50 | DOI