Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_4_a1, author = {M. A. Sagadeeva}, title = {Problem of optimal dynamic measurement with multiplicative effects in spaces of differentiable ``noises''}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {651--664}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a1/} }
TY - JOUR AU - M. A. Sagadeeva TI - Problem of optimal dynamic measurement with multiplicative effects in spaces of differentiable ``noises'' JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 651 EP - 664 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a1/ LA - ru ID - VSGTU_2024_28_4_a1 ER -
%0 Journal Article %A M. A. Sagadeeva %T Problem of optimal dynamic measurement with multiplicative effects in spaces of differentiable ``noises'' %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 651-664 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a1/ %G ru %F VSGTU_2024_28_4_a1
M. A. Sagadeeva. Problem of optimal dynamic measurement with multiplicative effects in spaces of differentiable ``noises''. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 651-664. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a1/
[1] Bychkov E. V., Zagrebina S. A., Zamyshlyaeva A. A., et al., “Development of the theory of optimal dynamic measurement”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022), 19–33 (In Russian) | DOI | Zbl
[2] Granovskiy V. A., Dinamicheskie izmereniia. Osnovy metrologicheskogo obespecheniia [Dynamic Measurements. Fundamentals of Metrological Support], Energoatomizdat, Leningrad, 1984, 224 pp. (In Russian)
[3] Shestakov A. L., Metody teorii avtomaticheskogo upravleniia v dinamicheskikh izmereniiakh [Methods of the Theory of Automatic Control in Dynamic Measurements], Chelyabinsk, 2013 \publSouth Ural State Univ., 257 pp. (In Russian)
[4] Shestakov A. L., Keller A. V., Sviridyuk G. A., “The theory of optimal measurements”, J. Comp. Eng. Math., 1:1 (2014), 3–16 | Zbl
[5] Sviridyuk G. A., Brychev S. V., “Numerical solution of systems of equations of Leontief type”, Russian Math. (Iz. VUZ), 47:8 (2003), 44–50 | MR | Zbl
[6] Favini A., Sviridyuk G. A., Sagadeeva M. A., “Linear Sobolev type equations with relatively $p$-sectorial operators in space of “noises””, Mediter. J. Math., 15:1 (2016), 185–196 | DOI | Zbl
[7] Gliklikh Yu. E., “Investigation of Leontieff type equations with white noise by the methods of mean derivatives of stochastic processes”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13, 24–34 (In Russian) | Zbl
[8] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Rquations and Degenerate Semigroups of Operators, Inverse and Ill-Posed Problems Series, 42, De Gruyter, Utrecht, 2003, viii+216 pp. | DOI | Zbl
[9] Al'shin A. B., Korpusov M. O., Sveshnikov A. G., Blow-up in Nonlinear Sobolev Type Equations, De Gruyter Series in Nonlinear Analysis and Applications, 15, De Gruyter, Berlin, 2011, xii+648 pp. | DOI | Zbl
[10] Keller A. V., “The Leontief type systems: classes of problems with the Showalter–Sidorov intial condition and numerical solving”, Bulletin of Irkutsk State Univ., Ser. Mathematics, 3:2 (2010), 30–43 (In Russian) | Zbl
[11] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov problem as a phenomena of the Sobolev-type equations”, Bulletin of Irkutsk State Univ., Ser. Mathematics, 3:1 (2010), 104–125 (In Russian) | Zbl
[12] Keller A. V., Zagrebina S. A., “Some generalizations of the Showalter–Sidorov problem for Sobolev-type models”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015), 5–23 (In Russian) | DOI | Zbl
[13] Sviridyuk G. A., Keller A. V., “On the numerical solution convergence of optimal control problems for Leontief type system”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, no. 2, 24–33 (In Russian) | DOI | Zbl
[14] Keller A. V., “On the computational efficiency of the algorithm of the numerical solution of optimal control problems for models of Leontieff type”, J. Comp. Eng. Math., 2:2 (2015), 39–59 | DOI | Zbl
[15] Zamyshlyaeva A. A., Tsyplenkova O. N., “Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for Sobolev type equations in the spaces of stochastic processes”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:3 (2022), 38–44 (In Russian) | DOI | Zbl
[16] Keller A. V., Sagadeeva M. A., “Degenerate matrix groups and degenerate matrix flows in solving the optimal control problem for dynamic balance models of the economy”, Springer Proceedings in Mathematics and Statistics, 325, Semigroups of Operators – Theory and Applications, Springer, Cham, 2020, 263–277 | DOI | Zbl
[17] Shestakov A. L., Sviridyuk G. A., Khudyakov Yu. V., “Dynamical measurements in the view of the group operators theory”, Semigroups of Operators – Theory and Applications, Springer Proceedings in Mathematics and Statistics, 113, Springer, Cham, 2015, 273–286 | DOI | Zbl
[18] Sagadeeva M. A., “Reconstruction of observation from distorted data for the optimal dynamic measurement problem”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019), 82–96 (In Russian) | DOI | Zbl
[19] Shestakov A. L., Zagrebina S. A., Manakova N. A., et al., “Numerical optimal measurement algorithm under distortions caused by inertia, resonances, and sensor degradation”, Autom. Remote Control, 82:1 (2021), 41–50 | DOI | DOI | Zbl