Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_3_a7, author = {A. P. Yankovskii}, title = {Refined model of thermo-visco-elastic-plastic dynamic deformation of reinforced flexible shallow shell}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {562--585}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a7/} }
TY - JOUR AU - A. P. Yankovskii TI - Refined model of thermo-visco-elastic-plastic dynamic deformation of reinforced flexible shallow shell JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 562 EP - 585 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a7/ LA - ru ID - VSGTU_2024_28_3_a7 ER -
%0 Journal Article %A A. P. Yankovskii %T Refined model of thermo-visco-elastic-plastic dynamic deformation of reinforced flexible shallow shell %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 562-585 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a7/ %G ru %F VSGTU_2024_28_3_a7
A. P. Yankovskii. Refined model of thermo-visco-elastic-plastic dynamic deformation of reinforced flexible shallow shell. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 3, pp. 562-585. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a7/
[1] Composites: State of Art, ed. L. W. Weeton, E. Scala, Metallurgical Society of AIME, New York, 1974, 365 pp.
[2] Handbook of Composites, ed. G. Lubin, Van Nostrand Reinhold, New York, 1982, 786 pp.
[3] Kompozitsionnye materialy: Spravochnik [Composite Materials: Handbook], ed. D. M. Karpinos, Nauk. Dumka, Kiev, 1985, 592 pp. (In Russian)
[4] Tarnopol'sky Yu. M., Zhigun I. G., Polyakov V. A., Prostranstvenno-armirovannye kompozitsionnye materialy: Spravochnik [Spatially Reinforced Composite Materials: Handbook], Mashinostroenie, Moscow, 1987, 224 pp. (In Russian)
[5] Abrosimov N. A., Bazhenov V. G., Nelineinye zadachi dinamiki kompozitnykh konstruktsii [Nonlinear Problems of Dynamics Composites Designs], Nizhniy Novgorod State Univ., Nizhniy Novgorod, 2002, 400 pp. (In Russian)
[6] Kazanci Z., “Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses”, Int. J. Non-Linear Mech., 46:5 (2011), 807–817 | DOI
[7] Solomonov Yu. S., Georgievskii V. P., Nedbai A. Ya., Andryushin V. A., Prikladnye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied Problems of Mechanics of Composite Cylindrical Shells], Fizmatlit, Moscow, 2014, 408 pp. (In Russian)
[8] Dimitrienko Yu. I., Mekhanika kompozitnykh konstruktsii pri vysokikh temperaturakh [Mechanics of Composite Structures under High Temperatures], Fizmatlit, Moscow, 2019, 448 pp. (In Russian)
[9] Yonezu A., Yoneda K., Hirakata H., et al., “A simple method to evaluate anisotropic plastic properties based on dimensionless function of single spherical indentation – Application to SiC whisker-reinforced aluminum alloy”, Mat. Sci. Eng. A, 527:29–30 (2010), 7646–7657 | DOI
[10] He G., Liu Y., Hammi Y., Bammann D. J., Horstemeyer M. F., “A combined viscoelasticity-viscoplasticity-anisotropic damage model with evolving internal state variables applied to fiber reinforced polymer composites”, Mech. Adv. Mater. Struct., 28:17 (2020), 7646–7657 | DOI
[11] Yu M.-h., “Advances in strength theories for materials under complex stress state in the 20th century”, Appl. Mech. Rev., 55:3 (2002), 169–218 | DOI
[12] Qatu M. S., Sullivan R. W., Wang W., “Recent research advances on the dynamic analysis of composite shells: 2000–2009”, Comp. Struct., 93:1 (2010), 14–31 | DOI
[13] Morinière F. D., Alderliesten R. C., Benedictus R., “Modelling of impact damage and dynamics in fibre-metal laminates — A review”, Int. J. Impact Eng., 67 (2014), 27–38 | DOI
[14] Vena P., Gastaldi D., Contro R., “Determination of the effective elastic-plastic response of metal-ceramic composites”, Int. J. Plasticity, 24:3 (2008), 483–508 | DOI
[15] Brassart L., Stainier L., Doghri I., Delannay L., “Homogenization of elasto-(visco) plastic composites based on an incremental variational principle”, Int. J. Plasticity, 36 (2012), 86–112 | DOI
[16] Vasiliev V. V., Morozov E., Advanced Mechanics of Composite Materials and Structural Elements, Elsever, Amsterdam, 2013, xii+412 pp. | DOI
[17] Gibson R. F., Principles of Composite Material Mechanics, CRC Press, Boca Raton, 2016, xxiii+700 pp. | DOI
[18] Akhundov V. M., “Incremental carcass theory of fibrous media under large elastic and plastic deformations”, Mech. Compos. Mater., 51:3 (2015), 383–396 | DOI
[19] Rajhi W., Saanouni K., Sidhom H., “Anisotropic ductile damage fully coupled with anisotropic plastic flow: Modeling, experimental validation, and application to metal forming simulation”, Int. J. Damage Mech., 23:8 (2014), 1211–1256 | DOI
[20] Lee E.-H., Stoughton T. B., Yoon J. W., “A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule”, Int. J. Plasticity, 99 (2017), 120–143 | DOI
[21] Nizolek T. J., Pollock T. M., McMeeking R. M., “Kink band and shear band localization in anisotropic perfectly plastic solids”, J. Mech. Phys. Solids, 146 (2021), 104183 | DOI
[22] Yankovskii A. P., “Modeling of non-isothermic viscoelastic-plastic behavior of flexible reinforced plates”, Comput. Cont. Mech., 13:3 (2020), 350–370 (In Russian) | DOI
[23] Yankovskii A. P., “Modeling of non-isothermal elastic-plastic behavior of reinforced shallow shells in the framework of a refined bending theory”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:1 (2023), 119–141 (In Russian) | DOI
[24] Yankovskii A. P., “Modeling of thermoelastic-visco-plastic deformation of flexible reinforced plates”, Mech. Solids, 57:7 (2022), 111–133 | DOI | DOI
[25] Reissner E., “On transverse vibrations of thin shallow elastic shells”, Quart. Appl. Math., 13:2 (1955), 169–176 | DOI | Zbl
[26] Malmeister A. K., Tamuzh V. P., Teters G. A., Soprotivlenie zhestkikh polimernykh materialov [Resistance of Rigid Polymeric Materials], Zinatne, Riga, 1972, 500 pp. (In Russian)
[27] Bogdanovich A. E., Nelineinye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek [Nonlinear Problems of the Dynamics of Cylindrical Composite Shells], Zinatne, Riga, 1987, 295 pp. (In Russian)
[28] Ambartsumyan S. A., Obschaya teoriya anizotropnykh obolochek, Nauka, M., 1974, 446 \miscransl pp. (In Russian)
[29] Reddy J. N., Mechanics of Laminated Composite Plates and Shells. Theory and Analysis, CRC Press, Boca Raton, 2004, xxiii+831 pp. | DOI | Zbl
[30] Andreev A., Uprugost' i termouprugost' sloistykh kompozitnykh obolochek. Matematicheskaia model' i nekotorye aspekty chislennogo analiza [Elasticity and Thermoelasticity of Layered Composite Shells. Mathematical Model and Some Aspects of Numerical Analysis], Palmarium Academic Publ., Saarbrücken, 2013, 93 pp. (In Russian)
[31] Bolotin V. V., Novichkov Yu. N., Mekhanika mnogosloinykh konstruktsii [Mechanics of Multilayer Structures], Mashinostroenie, Moscow, 1980, 375 pp. (In Russian)
[32] Kulikov G. M., “Thermoelasticity of flexible multilayer anisotropic shells”, Mech. Solids, 29:2 (1994), 27–35
[33] Houlston R., DesRochers C. G., “Nonlinear structural response of ship panels subjected to air blast loading”, Comp. Struct., 26:1–2 (1987), 1–15 | DOI
[34] Khazhinskii G. M., Modeli deformirovaniia i razrusheniia metallov [The Models of Metal Deformation and Destruction], Nauchnyi Mir, Moscow, 2011, 231 pp. (In Russian)
[35] Lukanin V. N., Shatrov M. G., Kamfer G. M., et al., Teplotekhnika [Heat Engineering], ed. V. N. Lukanin, Vyssh. Shk., Moscow, 2003, 671 pp. (In Russian)