Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_3_a6, author = {N. V. Sevodina and N. A. Iurlova and D. A. Oshmarin}, title = {Method for determining the parameters of an electrical signal for controlling forced steady-state vibrations of~electroviscoelastic bodies.}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {543--561}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a6/} }
TY - JOUR AU - N. V. Sevodina AU - N. A. Iurlova AU - D. A. Oshmarin TI - Method for determining the parameters of an electrical signal for controlling forced steady-state vibrations of~electroviscoelastic bodies. JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 543 EP - 561 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a6/ LA - ru ID - VSGTU_2024_28_3_a6 ER -
%0 Journal Article %A N. V. Sevodina %A N. A. Iurlova %A D. A. Oshmarin %T Method for determining the parameters of an electrical signal for controlling forced steady-state vibrations of~electroviscoelastic bodies. %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 543-561 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a6/ %G ru %F VSGTU_2024_28_3_a6
N. V. Sevodina; N. A. Iurlova; D. A. Oshmarin. Method for determining the parameters of an electrical signal for controlling forced steady-state vibrations of~electroviscoelastic bodies.. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 3, pp. 543-561. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a6/
[1] Preumont A., Vibration Control of Active Structures: An Introduction, Springer, Dordrecht, 2011, xx+436 pp. | DOI | Zbl
[2] Lu F., Liu Y., Chen W., et al., “Radial disturbance compensation device of cylindrical cantilever beam using embedded piezoelectric ceramics with bending mode”, Mech. Syst. Signal Proc., 172 (2022), 109009 | DOI
[3] Zhu X., Chen Z., Jiao Y., “Optimizations of distributed dynamic vibration absorbers for suppressing vibrations in plates”, J. Low Freq. Noise, Vibr. Active Contr., 37:4 (2018), 1188–1200 | DOI
[4] Hagood N., Von Flotow A., “Damping of structural vibrations with piezoelectric materials and passive electrical networks”, J. Sound Vibr., 146:2 (1991), 243–268 | DOI
[5] Sevodina N. V., Oshmarin D. A., Iurlova N. A., “Method for determining the parameters of an electrical signal for controlling forced steady-state vibrations of electroviscoelastic bodies. Mathematical relations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:4 (2023), 679–703 (In Russian) | DOI
[6] Matveenko V. P., Oshmarin D. A., Sevodina N. V., Iurlova N. A., “Problem on natural vibrations of electroviscoelastic bodies with external electric circuits and finite element relations for its implementation”, Comput. Cont. Mech., 9:4 (2016), 476–485 (In Russian) | DOI
[7] Matveenko V. P., Iurlova N. A., Oshmarin D. A., Sevodina N. V., “Analysis of dissipative properties of electro-viscoelastic bodies with shunting circuits on the basis of numerical modelling of natural vibrations”, Acta Mech., 234 (2023), 261–276 | DOI | Zbl
[8] Matveenko V. P., Kligman E. P., “Natural vibration problem of viscoelastic solids as applied to optimization of dissipative properties of constructions”, J. Vibr. Control, 3:1 (1997), 87–102 | DOI
[9] Clark W.W., “Vibration control with state-switched piezoelectric materials”, J. Intel. Mat. Syst. Struct., 11:4 (2000), 263–271 | DOI
[10] Qureshi E.M., Shen X., Chen J., “Vibration control laws via shunted piezoelectric transducers: A review”, Int. J. Aeronaut. Space Sci., 15:1 (2014), 1–19 | DOI
[11] Richard C., Guyomar D., Audigier D., Ching G., “Semi-passive damping using continuous switching of a piezoelectric device”, Proc. SPIE, 3672 (1999), 104–111 | DOI
[12] Ramaratnam A., Jalili N., “A switched stiffness approach for structural vibration control: Theory and real time implementation”, J. Sound Vibr., 291:1–2 (2006), 259–274 | DOI
[13] Wang Q., Wang C.M., “Optimal placement and size of piezoelectric patches on beams from the controllability perspective”, Smart Mater. Struct., 9:4 (2000), 558–567 | DOI
[14] Prakash B., Yasin M.Y., Khan A.H., et al., “Optimal location and geometry of sensors and actuators for active vibration control of smart composite beams”, Australian J. Mech. Engng., 20:4 (2022), 981–999 | DOI
[15] Alam N.M., Rahman N., “Active vibration control of a piezoelectric beam using PID controller: Experimental study”, Latin Amer. J. Solids Struct., 9:6 (2012), 657–673 | DOI
[16] Williams D., Haddad K.H, Jiffri S., Yang C., “Active vibration control using piezoelectric actuators employing practical components”, J. Vibr. Control, 25:21–22 (2019), 2784–2798 | DOI
[17] Iurlova N. A., Oshmarin D. A., Sevodina N. V., “A numerical analysis of forced steady-state vibrations of an electro-viscoelastic system in case of a joint impact of electrical and mechanical loads”, PNRPU Mechanics Bulletin, 2022, no. 4, 67–79 (In Russian) | DOI