Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_3_a5, author = {A. A. Rogovoy}, title = {Microstructural model of twinning and detwinning processes of the martensitic phase in shape memory alloys}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {516--542}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a5/} }
TY - JOUR AU - A. A. Rogovoy TI - Microstructural model of twinning and detwinning processes of the martensitic phase in shape memory alloys JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 516 EP - 542 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a5/ LA - ru ID - VSGTU_2024_28_3_a5 ER -
%0 Journal Article %A A. A. Rogovoy %T Microstructural model of twinning and detwinning processes of the martensitic phase in shape memory alloys %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 516-542 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a5/ %G ru %F VSGTU_2024_28_3_a5
A. A. Rogovoy. Microstructural model of twinning and detwinning processes of the martensitic phase in shape memory alloys. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 3, pp. 516-542. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a5/
[1] Bhattacharya K., “Wedge-like microstructure in martensites”, Acta Metal. Mater., 39:10 (1991), 2431–2444 | DOI
[2] Hane K. F., Shield T. W., “Symmetry and microstructure in martensites”, Philos. Mag. A, 78:6 (1998), 1215–1252 | DOI
[3] Hane K. F., Shield T. W., “Microstructure in a copper–aluminium–nickel shape memory alloy”, Proc. R. Soc. Lond. A, 455:1991 (1999), 3901–3915 | DOI
[4] Hane K. F., Shield T. W., “Microstructure in a cubic to orthorhombic transition”, J. Elast., 59 (2000), 267–318 | DOI | Zbl
[5] Vedantam S., Constitutive modeling of Cu–Al–Ni shape memory alloys, Doctoral Dissertation, Massachusetts Institute of Technology, Massachusetts, 2000 https://dspace.mit.edu/handle/1721.1/34342
[6] Vedantama S., Abeyaratneb R., “A Helmholtz free-energy function for a Cu–Al–Ni shape memory alloy”, Int. J. Non-Linear Mechan., 40 (2005), 177–193 | DOI
[7] Truesdell C., A First Course in Rational Continuum Mechanics, v. 1: General Concepts, Pure and Applied Mathematics, 71, Academic Press, New York, 1977, xxiii+280 pp. | Zbl
[8] Likhachev V. A., Malinin V. G., Strukturno-analiticheskaia teoriia prochnosti [Structural and Analytical Theory of Strength], Nauka, St. Petersburg, 1993, 471 pp. (In Russian)
[9] Panin V. E., “Fundamentals of physical mesomechanics”, Fiz. Mezomekh., 1:1 (1998), 5–22 (In Russian)
[10] Panin V. E., Egorushkin V. E., “Basic physical mesomechanics of plastic deformation and fracture of solids as hierarchically organized nonlinear systems”, Fiz. Mezomekh., 18:5 (2015), 100–113 (In Russian) | DOI
[11] Trusov P. V., Shveikin A. I., Mnogourovnevye modeli mono- i polikristallicheskikh materialov: teoriia, algoritmy, primery primeneniia [Multilevel Models of Mono- and Polycrystalline Materials: Theory, Algorithms, Application Examples], Sibirsk. Otd. RAN, Novosibirsk, 2019, 605 pp. (In Russian)
[12] Trusov P. V., Ashikhmin V. N., Volegov P. S., Shveykin A. I., “Constitutive relations and their application to the description of microstructure evolution”, Fiz. Mezomekh., 12:3 (2009), 61–71 (In Russian)
[13] Trusov P. V., Shveykin A. I., Kondratiev N. S., Yants A. Yu., “Multilevel models in physical mesomechanics of metals and alloys: Results and prospects”, Fiz. Mezomekh., 23:6 (2020), 33–62 (In Russian) | DOI
[14] Belyaev F. S., Evard M. E., Volkov A. E., “Simulation of the plastic deformation of shape memory alloys considering shear anisotropy on the slip plane”, Mater. Phys. Mech., 51:1 (2023), 61-67 | DOI
[15] Belyaev F. S., Volkov A. E., Evard M. E., “Microstructural modeling of reversible and irreversible deformation under cyclic thermomechanical loading of titanium nickelide”, Tambov Univ. Reports. Ser. Natural Techn. Sci., 18:4 (2013), 2025–2026 (In Russian)
[16] Rogovoy A. A., Stolbova O. S., Stolbov O. V., “Numerical simulation of evolution of magnetic microstructure in Heusler alloys”, J. Appl. Mech. Techn. Phys., 62:5 (2021), 870–881 | DOI | DOI | Zbl
[17] Rogovoy A. A., Stolbova O. S., “Microstructural modeling of the magnetization process in Ni$_2$MnGa alloy polytwin crystals”, Magnetochem., 8:8 (2022), 78 | DOI
[18] Rogovoy A. A., Stolbova O. S., “Microstructural model of the behavior of a ferroalloy with shape memory in a magnetic field”, Mech. Adv. Mater. Struct., 31:2 (2022), 387–406 | DOI
[19] Rogovoy A. A., Stolbova O. S., “Microstructural model of magnetic and deformation behavior of single crystals and polycrystals of ferromagnetic shape memory alloy”, Magnetochem., 9:2 (2023), 40 | DOI
[20] Rogovoy A. A., Stolbova O. S., “Microstructural model of magnetic and deformation behavior of single crystals and polycrystals of ferromagnetic shape-memory alloy”, H. Altenbach, V. Eremeyev (eds). Advances in Linear and Nonlinear Continuum and Structural Mechanics, Advanced Structured Materials, 198, Springer, Cham, 397–442 | DOI
[21] Rogovoy A. A., Stolbova O. S., “An approach to describe the twinning and detwinning processes of the martensitic structure in ferromagnetic alloy with shape memory in magnetic and force fields”, Mech. Adv. Mater. Struct., 2024 (to appear) | DOI
[22] Rogovoi A. A., Formalizovannyi podkhod k postroeniiu modelei mekhaniki deformiruemogo tverdogo tela. Chast' 1. Osnovnye sootnosheniia mekhaniki sploshnykh sred [A Formalized Approach to the Construction of Models of Deformable Solid Mechanics. Part 1. Basic Relations of Continuum Mechanics], Uralsk. Otd. RAN, Perm', 2020, 288 pp. (In Russian)
[23] Kosilov A. T., Yuriev V. A., “Profiled Cu–Al–Ni single crystals with pseudoelasticity and shape memory effects”, Mezhdun. Nauchn. Zhurn. Alternativn. Energetika Ekologiia, 2015, no. 3, 49–61 (In Russian)
[24] Otsuka K., Shimizu K., “Morphology and crystallography of thermoelastic Cu–Al–Ni martensite analyzed by the phenomenological theory”, Trans. JIM, 15:2 (1974) | DOI
[25] Lur'e A. I., Nelineinaia teoriia uprugosti [Nonlinear Theory of Elasticity], Nauka, Moscow, 1980, 512 pp. (In Russian) | Zbl
[26] James R. D., “Finite deformation by mechanical twinning”, Arch. Ration. Mech. Anal., 77 (1981), 143–176 | DOI | Zbl
[27] Gurtin M. E., “Two-phase deformations of elastic solids”, Arch. Ration. Mech. Anal., 84 (1983), 1–29 | DOI | Zbl
[28] Yasunaga M., Funatsu Y., Kojima S., et al., “Measurement of elastuc constant”, Scripta Metallurg., 17:9 (1983), 1091–1094 | DOI