Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_3_a3, author = {A. N. Prokudin}, title = {Elastoplastic analysis of a rotating hollow cylinder with~a~rigid shaft under temperature gradient}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {462--488}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a3/} }
TY - JOUR AU - A. N. Prokudin TI - Elastoplastic analysis of a rotating hollow cylinder with~a~rigid shaft under temperature gradient JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 462 EP - 488 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a3/ LA - ru ID - VSGTU_2024_28_3_a3 ER -
%0 Journal Article %A A. N. Prokudin %T Elastoplastic analysis of a rotating hollow cylinder with~a~rigid shaft under temperature gradient %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 462-488 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a3/ %G ru %F VSGTU_2024_28_3_a3
A. N. Prokudin. Elastoplastic analysis of a rotating hollow cylinder with~a~rigid shaft under temperature gradient. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 3, pp. 462-488. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a3/
[1] Gamer U., Sayir M., “Elastic-plastic stress distribution in a rotating solid shaft”, ZAMM, Z. Angew. Math. Mech., 35 (1984), 601–617 | DOI | Zbl
[2] Gamer U., Mack W., Varga I., “Rotating elastic-plastic solid shaft with fixed ends”, Int. J. Eng. Sci., 35:3 (1997), 253–267 | DOI | Zbl
[3] Mack W., “The rotating elastic-plastic solid shaft with free ends”, Techn. Mech., 12:2 (1991), 119–124
[4] Gamer U., Lance R. H., “Stress distribution in a rotating elastic-plastic tube”, Acta Mech., 50 (1983), 1–8 | DOI | Zbl
[5] Mack W., “Rotating elastic-plastic tube with free ends”, Int. J. Solids Struct., 27:11 (1991), 1461–1476 | DOI | Zbl
[6] Kamal S. M., Perl M., Bharali D., “Generalized plane strain study of rotational autofrettage of thick-walled cylinders — Part I: Theoretical analysis”, J. Pressure Vessel Technol., 141:5 (2019), 051201 | DOI
[7] Prokudin A. N., “Exact elastoplastic analysis of a rotating cylinder with a rigid inclusion under mechanical loading and unloading”, ZAMM, Z. Angew. Math. Mech., 100:3 (2020), e201900213 | DOI | Zbl
[8] Prokudin A. N., Firsov S. V., “Elastoplastic deformation of a rotating hollow cylinder with a rigid casing”, PNRPU Mechanics Bulletin, 2019, no. 4, 120–135 (In Russian) | DOI
[9] Lindner T., Mack W., “Residual stresses in an elastic-plastic solid shaft with fixed ends after previous rotation”, ZAMM, Z. Angew. Math. Mech., 78:2 (1998), 75–86 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[10] Prokudin A. N., “Elastic-plastic analysis of rotating solid shaft by maximum reduced stress yield criterion”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:1 (2020), 74–94 (In Russian) | DOI
[11] Prokudin A. N., “Schmidt–Ishlinskii yield criterion and a rotating cylinder with a rigid inclusion”, J. Appl. Comput. Mech., 7:2 (2021), 858–869 | DOI
[12] Prokudin A. N., Firsov S. V., “Elastoplastic deformation of a rotating hollow cylinder with a rigid casing under maximum reduced stress yield”, J. Appl. Ind. Math., 16:2 (2022), 313–332 | DOI | DOI
[13] Prokudin A. N., Burenin A. A., “Unified yield criterion and elastoplastic analysis of a rotating solid cylinder”, J. Appl. Mech. Techn. Phys., 62:5 (2021), 760–770 | DOI | DOI
[14] Eraslan A. N., “On the linearly hardening rotating solid shaft”, Eur. J. Mec. A – Solids, 22:2 (2003), 295–307 | DOI
[15] Zare H. R., Darijani H., “A novel autofrettage method for strengthening and design of thick-walled cylinders”, Materials Design, 105 (2019), 366–374 | DOI
[16] Zare H. R., Darijani H., “Strengthening and design of the linear hardening thick-walled cylinders using the new method of rotational autofrettage”, Int. J. Mech. Sci., 124–125 (2017), 1–8 | DOI
[17] Eraslan A. N., “Von Mises' yield criterion and nonlinearly hardening rotating shafts”, Acta Mech., 168:3–4 (2004), 129–144 | DOI | Zbl
[18] Eraslan A. N., Mack W., “A computational procedure for estimating residual stresses and secondary plastic flow limits in nonlinearly strain hardening rotating shafts”, Forsch. Ingenieurwesen, 69 (2005), 65–75 | DOI
[19] Prokudin A. N., “Exact elastoplastic analysis of a rotating hollow cylinder made of power-law hardening material”, Mater. Phys. Mech., 51:2 (2023), 96–111 | DOI
[20] Akhavanfar S., Darijani H., Darijani F., “Constitutive modeling of high strength steels; application to the analytically strengthening of thick-walled tubes using the rotational autofrettage”, Eng. Struct., 278 (2023), 115516 | DOI
[21] Akis T., Eraslan A.N., “Exact solution of rotating FGM shaft problem in the elastoplastic state of stress”, Arch. Appl. Mech., 77:10 (2007), 745–765 | DOI | Zbl
[22] Eraslan A. N., Akis T., “The stress response of partially plastic rotating FGM hollow shafts: Analytical treatment for axially constrained ends”, Mech. Based Design Struct. Machines, 34:3 (2006), 241–260 | DOI
[23] Nejad M. Z., Fatehi P., “Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials”, Int. J. Eng. Sci., 86 (2015), 26–43 | DOI
[24] Argeso H., Eraslan A. N., “A computational study on functionally graded rotating solid shafts”, Int. J. Comput. Methods Eng. Sci. Mech., 8:6 (2007), 391–399 | DOI | Zbl
[25] Varmazyari S., Shokrollahi H., “Analytical solution for strain gradient plasticity of rotating functionally graded thick cylinders”, Int. J. Appl. Mech., 12:07 (2020), 2050082 | DOI
[26] Eraslan A. N., Arslan E., Mack W., “The strain hardening rotating hollow shaft subject to a positive temperature gradient”, Acta Mech., 194:1–4 (2007), 191–211 | DOI | Zbl
[27] Arslan E., Mack W., Eraslan A. N., “The rotating elastic-plastic hollow shaft conveying a hot medium”, Forsch. Ingenieurwesen, 74 (2010), 27–39 | DOI
[28] Arslan E., Mack W., Eraslan A. N., “Effect of a temperature cycle on a rotating elastic-plastic shaft”, Acta Mech., 195:1–4 (2008), 129–140 | DOI | Zbl
[29] Nejad M. Z., Alamzadeh N., Hadi A., “Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition”, Compos. B: Eng., 154 (2018), 410–422 | DOI
[30] Ebrahimi T., Nejad M. Z., Jahankoha H., Hadi A., “Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels”, Steel Compos. Struct., 38:2 (2021), 189–211 | DOI
[31] Apatay T., Arslan E., Mack W., “Effects of homogeneous and inhomogeneous heating on rotating shrink fits with annular inclusion and functionally graded hub”, J. Thermal Stresses, 42:11 (2019), 1458–1479 | DOI
[32] Hajisadeghian A., Masoumi A., Parvizi A., “Analytical investigation of elastic and plastic behavior of rotating double-walled FGM-homogenous hollow shafts”, Arch. Appl. Mech., 91 (2021), 1343–1369 | DOI
[33] Eldeeb A. M., Shabana Y. M., Elsawaf A., “Investigation of the thermoelastoplastic behaviors of multilayer FGM cylinders”, Compos. Struct., 276 (2021), 114523 | DOI
[34] Güven U., “The fully plastic rotating disk with rigid inclusion”, ZAMM, Z. Angew. Math. Mech., 77:9 (1997), 714–716 | DOI | Zbl
[35] Güven U., “Elastic-plastic rotating disk with rigid inclusion”, Mech. Struct. Machines, 27:1 (1999), 117–128 | DOI
[36] Parmaksizoğlu C., Güven U., “Plastic stress distribution in a rotating disk with rigid inclusion under a radial temperature gradient”, Mech. Struct. Machines, 26:1 (1998), 9–20 | DOI
[37] Eraslan A. N., Akis T., “On the elastic-plastic deformation of a rotating disk subjected to a radial temperature gradient”, Mech. Based Design Struct. Machines, 31:4 (2003), 529–561 | DOI
[38] Koiter W. T., “Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface”, Q. Appl. Math., 11:3 (1953), 350–354 | DOI | Zbl
[39] Meng Q., Zhao J., Mu Zh., Zhai R., Yu G., “Springback prediction of multiple reciprocating bending based on different hardening models”, J. Manufact. Proces., 76 (2022), 251–263 | DOI