Wave numbers of harmonic plane waves of translational and spinor displacements in a semiisotropic thermoelastic solid
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 3, pp. 445-461.

Voir la notice de l'article provenant de la source Math-Net.Ru

In present paper the propagation of plane harmonic coupled waves of temperature increment, translational and spinor displacements in a semiisotropic thermoelastic solid is discussed. Characteristic equations for the wave numbers of plane harmonic coupled thermoelastic longitudinal (bicubic equation) and transverse waves (biquartic equation that naturally splits into two quartic algebraic equations) are obtained and analyzed. For a longitudinal wave, the complex amplitudes of the temperature increment, translational and spinor displacements are also coupled, contrary to a transverse wave. Algebraic forms containing multivalued complex square and cubic radicals for the wave numbers of transverse waves are derived by using the Wolfram Mathematica 13 symbolic computing system.
Keywords: micropolar thermoelasticity, semiisotropic solid, translational displacement, spinor displacement, plane harmonic wave, longitudinal wave, wave number, phase plane
Mots-clés : transverse wave, complex amplitude, dispersion equation
@article{VSGTU_2024_28_3_a2,
     author = {E. V. Murashkin and Yu. N. Radayev},
     title = {Wave numbers of harmonic plane waves of translational and spinor displacements in a semiisotropic thermoelastic solid},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {445--461},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a2/}
}
TY  - JOUR
AU  - E. V. Murashkin
AU  - Yu. N. Radayev
TI  - Wave numbers of harmonic plane waves of translational and spinor displacements in a semiisotropic thermoelastic solid
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2024
SP  - 445
EP  - 461
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a2/
LA  - ru
ID  - VSGTU_2024_28_3_a2
ER  - 
%0 Journal Article
%A E. V. Murashkin
%A Yu. N. Radayev
%T Wave numbers of harmonic plane waves of translational and spinor displacements in a semiisotropic thermoelastic solid
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2024
%P 445-461
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a2/
%G ru
%F VSGTU_2024_28_3_a2
E. V. Murashkin; Yu. N. Radayev. Wave numbers of harmonic plane waves of translational and spinor displacements in a semiisotropic thermoelastic solid. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 3, pp. 445-461. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a2/

[1] Smith A. C., “Elastic wave propagation in noncentrosymmetric, isotropic media: dispersion and field equations”, Int. J. Eng. Sci., 5:10 (1967), 741–746 | DOI

[2] Willson A. J., “The micropolar elastic vibrations of a circular cylinder”, Int. J. Eng. Sci., 10:1 (1972), 17–22 | DOI

[3] Achenbach J. D., Wave Propagation in Elastic Solids, North-Holland Series in Applied Mathematics and Mechanics, 16, North-Holland Publ., Amsterdam, 1973, xiv+425 pp. | Zbl

[4] Maugin G. A., “Acceleration waves in simple and linear viscoelastic micropolar materials”, Int. J. Eng. Sci., 12:2 (1974), 143–157 | DOI

[5] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, viii+383 pp. | Zbl

[6] Murashkin E. V., Radayev Yu. N., “On strong and weak discontinuities of the coupled thermomechanical field in micropolar thermoelastic type-II continua”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 4, 85–97 (In Russian) | DOI | Zbl

[7] Kovalev V. A., Murashkin E. V., Radayev Yu. N., “A mathematical theory of plane harmonic coupled thermoelastic waves in type-I micropolar continua”, Izv. Saratov Univ. Math. Mech. Inform., 14:1 (2014), 77–87 (In Russian) | DOI

[8] Kovalev V. A., Murashkin E. V., Radayev Yu. N., “On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua”, Izv. Saratov Univ. Math. Mech. Inform., 15:1 (2015), 79–89 | DOI

[9] Murashkin E. V., Radayev Yu. N., “Thermic and athermic plane harmonic waves in acentric isotropic solid”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2023, no. 2, 99–107 (In Russian) | DOI

[10] Polozhy G. N., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Vyssh. Shk., Moscow, 1964, 560 pp. (In Russian)

[11] Murashkin E. V., Radayev Yu. N., “Direct, inverse and mirror wave modes of coupled displacements and microrotations monochromatic plane waves in hemitropic micropolar media”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2021, no. 2, 115–127 (In Russian) | DOI

[12] Neuber H., “On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua”, Applied Mechanics, eds. H. Görtler, Springer, Berlin, Heidelberg, 1966, 153–158 | DOI

[13] Radayev Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 504–517 (In Russian) | DOI

[14] Radayev Yu. N., Murashkin E. V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Problems of Strength and Plasticity, 82:4 (2020), 399–412 (In Russian) | DOI

[15] Murashkin E. V., Radayev Yu. N., “Reducing natural forms of hemitropic energy potentials to conventional ones”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 4, 108–115 (In Russian) | DOI

[16] Murashkin E. V., Radayev Yu. N., “On two base natural forms of asymmetric force and couple stress tensors of potential in mechanics of hemitropic solids”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 3, 86–100 (In Russian) | DOI

[17] Murashkin E. V., “On the relationship of micropolar constitutive parameters of thermodynamic state potentials”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 1, 110–121 (In Russian) | DOI

[18] Murashkin E. V., Radayev Y. N., “Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space”, Uchen. Zap. Kazan. Univ. Ser. Fiz.-Matem. Nauki, 165:4 (2023), 389–403 (In Russian) | DOI

[19] Murashkin E. V., Radayev Y. N., “A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity”, Lobachevskii J. Math., 44:6 (2023), 2440–2449 | DOI

[20] Murashkin E. V., Radayev Yu. N., “Theory of Poisson's ratio for a thermoelastic micropolar acentric isotropic solid”, Lobachevskii J. Math., 45:5 (2024), 2378–2390 | DOI

[21] Murashkin E. V., Radayev Yu. N., “Coupled thermoelasticity of hemitropic media. Pseudotensor formulation”, Mech. Solids, 58:3 (2023), 802–813 | DOI | DOI

[22] Murashkin E. V., Radayev Y. N., “Heat transfer in anisotropic micropolar solids”, Mech. Solids, 58:9 (2023), 3111–3119 | DOI

[23] Murashkin E. V., Radayev Yu. N., “On the polyvariance of the base equations of coupled micropolar thermoelasticity”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2023, no. 3, 112–128 (In Russian) | DOI

[24] Murashkin E. V., Radayev Yu. N., “On the polyvariance of the base equations of coupled micropolar thermoelasticity”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2023, no. 4, 86–120 (In Russian) | DOI

[25] Murashkin E. V., Radayev Y. N., “On algebraic triple weights formulation of micropolar thermoelasticity”, Mech. Solids, 59:1 (2024), 555–580 | DOI

[26] Murashkin E. V., Radayev Y. N., “Thermomechanical states of gyrotropic micropolar solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:4 (2023), 659–678 (In Russian) | DOI

[27] Murashkin E. V., Radayev Yu. N., “Algebraic algorithm for the systematic reduction of one-point pseudotensors to absolute tensors”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 1, 17–27 (In Russian) | DOI

[28] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, P. Noordhoff, Groningen, The Netherlands, 1964, viii+429 pp. | Zbl

[29] Schouten J. A., Tensor Analysis for Physicist, Clarendon Press, Oxford, 1951, 434 pp.

[30] Synge J. L., Schild A., Tensor Calculus, Dover Publ., New York, 1978, xi+324 pp.

[31] Nye J. F., Physical Properties of Crystals. Their Representation by Tensors and Matrices, Clarendon Press, Oxford, 1957, xv+322 pp. | Zbl

[32] Wooster W. A., Experimental Crystal Physics, Clarendon Press, Oxford, 1957, viii+115 pp.

[33] Voigt W., Lehrbuch der Kristallphysik (mit Ausschluß der Kristalloptik), B.G. Teubner, Leipzig, 1928, xxvi+978 pp. (In German) | Zbl

[34] Murashkin E. V., Radaev Y. N., “Two-dimensional Nye figures for some micropolar elastic solids”, Mech. Solids, 58:6 (2023), 2254–2268 | DOI

[35] Murashkin E. V., Radayev Yu. N., “Two-dimensional Nye figures for hemitropic micropolar elastic solids”, Izv. Saratov Univ. Math. Mech. Inform., 24:1 (2024), 109–122 (In Russian) | DOI

[36] Murashkin E. V., Radayev Yu. N., “On a method of constructing Nye figures for asymmetric theories of micropolar elasticity”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2023, no. 3, 100–111 (In Russian) | DOI

[37] Krylova E. Yu., Murashkin E. V., Radayev Y. N., “The Nye cells and figures for athermic hemitropic, isotropic and ultraisotropic micropolar elastic solids”, Mech. Solids, 59:3 (2024), 1311–1320 | DOI

[38] Murashkin E. V., Radayev Yu. N., “Generalization of the algebraic Hamilton–Cayley theory”, Mech. Solids, 56:6 (2021), 996–1003 | DOI | DOI

[39] Sushkevich A. K., Osnovy vysshei algebry [Fundamentals of Higher Algebra], ONTI, Moscow, 1937, 476 pp. (In Russian)

[40] Kovalev V. A., Radaev Y. N., Volnovye zadachi teorii polia i termomekhanika [Wave Problems of Field Theory and Thermomechanics], Saratov Univ., Saratov, 2010, 328 pp. (In Russian)

[41] Jeffreys H., Cartesian Tensors, Cambridge Univ. Press, Cambridge, 1931, vii+93 pp. | Zbl

[42] Murashkin E. V., Radayev Yu. N., “Covariantly constant tensors in Euclidean spaces. Elements of the theory”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 2, 106–115 (In Russian) | DOI

[43] Murashkin E. V., Radayev Yu. N., “Covariantly constant tensors in Euclidean spaces. Applications to continuum mechanics”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 2, 118–127 (In Russian) | DOI

[44] Radayev Yu. N., “Tensors with constant components in the constitutive equations of hemitropic micropolar solids”, Mech. Solids, 58:5 (2023), 1517–1527 | DOI | DOI

[45] Murashkin E. V., Radayev Yu. N., “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424–444 | DOI

[46] Murashkin E. V., Radayev Yu. N., “On the theory of linear hemitropic micropolar media”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2020, no. 4, 16–24 (In Russian) | DOI