Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_3_a1, author = {A. Nemdili and F. Korichi and H. Fujita Yashima}, title = {Approximation of the solution of transport-diffusion equation in {H\"older} space}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {426--444}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a1/} }
TY - JOUR AU - A. Nemdili AU - F. Korichi AU - H. Fujita Yashima TI - Approximation of the solution of transport-diffusion equation in H\"older space JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 426 EP - 444 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a1/ LA - ru ID - VSGTU_2024_28_3_a1 ER -
%0 Journal Article %A A. Nemdili %A F. Korichi %A H. Fujita Yashima %T Approximation of the solution of transport-diffusion equation in H\"older space %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 426-444 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a1/ %G ru %F VSGTU_2024_28_3_a1
A. Nemdili; F. Korichi; H. Fujita Yashima. Approximation of the solution of transport-diffusion equation in H\"older space. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 3, pp. 426-444. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a1/
[1] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | Zbl | Zbl
[2] Krylov N. V., Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics, 12, Amer. Math. Soc., Providence, RI, 1996, xii+164 pp. | Zbl
[3] Lieberman G. M., Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996, xi+439 pp. | Zbl
[4] Evans L. C., Partial Differential Equations, Graduate Studies in Mathematics, 19, Amer. Math. Soc., Providence, RI, 2010, xxi+749 pp. | Zbl
[5] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983, viii+279 pp. | DOI | Zbl
[6] Guikhman I., Skorokhod A., Introduction À La Théorie Des Processus Aléatoires [Introduction to the Theory of Random Processes], Mir, Moscow, 1980, 557 pp. (In French) | Zbl | Zbl
[7] Freidlin M. I., Wentzell A. D., Random Perturbations of Dynamical Systems, Grundlehren der Mathematischen Wissenschaften, 260, Springer, Berlin, 2012, xxviii+458 pp. | DOI | Zbl
[8] Taleb L., Selvaduray S., Fujita Yashima H., “Approximation par une moyenne locale de la solution de l'équation de transport-diffusion”, Afr. Math. Ann., 8 (2020), 71–90 (In French) | Zbl
[9] Smaali H., Fujita Yashima H., “Une généralisation de l'approximation par une moyenne locale de la solution de l'équation de transport-diffusion”, Afr. Math. Ann., 9 (2021), 89–108 (In French) | Zbl
[10] Ait Mahiout L., Fujita Yashima H., “Convergence de la solution d'une équation de transport-diffusion vers la solution d’une équation de transport”, Afr. Math. Ann., 10 (2023), 105–124 (In French) | Zbl
[11] Fujita Yashima H., Ait Mahiout L., “Convergence of solution of transport-diffusion system to that of transport system”, Vestn. Buryat. gos. univ. Mat., inform. [Bull. Buryat State Univ. Math., Inform.], 2023, no. 1, 22–36 (In Russian) | DOI
[12] Aouaouda M., Ayadi A., Fujita Yashima H., “Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:2 (2022), 222–258 (In Russian) | DOI
[13] Gherdaoui R., Taleb L., Selvaduray S., “Convergence of the heat kernel approximated solutions of the transport-diffusion equation in the half-space”, J. Math. Anal. Appl., 527:2 (2023), 127507 | DOI
[14] Gherdaoui R., Selvaduray S., Fujita Yashima H., “Convergence of approximate solutions for the transport-diffusion equation in the half-space with Neumann condition”, Izv. Irkutsk. Gos. Univ. Ser. Mat. [Bull. Irkutsk State Univ. Ser. Math.], 48 (2024), 64–79 (In Russian) | DOI