Approximation of the solution of transport-diffusion equation in H\"older space
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 3, pp. 426-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, approximate solutions for the transport-diffusion equation in $ \mathbb{R}^d $ and their limit function are considered and it is proved that the limit function belongs to the Hölder space corresponding to the regularity of given functions and satisfies the equation. More precisely, we construct these approximate solutions by using the heat kernel and the translation corresponding to the transport on each step of time discretization. Under the assumption of the boundedness of given functions and their partial derivatives with respect to the space variables up to the $m$-th order ($m \geqslant 2$) and of the $\alpha$-Hölder continuity of their $m$-th derivatives (${2}/{3} \alpha \leqslant 1$; if $ \alpha =1$, it means the Lipschitz condition), we first establish suitable estimates of the approximate solutions and then, using these estimates, we prove their convergence to a function which satisfies the equation and the $\alpha$-Hölder continuity of the $m$-th derivatives with respect to the space variables of the limit function. Note that these estimates do not depend on the coefficient of diffusion, so they can be used even in the case where the coefficient of diffusion tends to 0.
Mots-clés : transport-diffusion equation
Keywords: approximate solutions, Hölder space
@article{VSGTU_2024_28_3_a1,
     author = {A. Nemdili and F. Korichi and H. Fujita Yashima},
     title = {Approximation of the solution of transport-diffusion equation in {H\"older} space},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {426--444},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a1/}
}
TY  - JOUR
AU  - A. Nemdili
AU  - F. Korichi
AU  - H. Fujita Yashima
TI  - Approximation of the solution of transport-diffusion equation in H\"older space
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2024
SP  - 426
EP  - 444
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a1/
LA  - ru
ID  - VSGTU_2024_28_3_a1
ER  - 
%0 Journal Article
%A A. Nemdili
%A F. Korichi
%A H. Fujita Yashima
%T Approximation of the solution of transport-diffusion equation in H\"older space
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2024
%P 426-444
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a1/
%G ru
%F VSGTU_2024_28_3_a1
A. Nemdili; F. Korichi; H. Fujita Yashima. Approximation of the solution of transport-diffusion equation in H\"older space. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 3, pp. 426-444. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a1/

[1] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | Zbl | Zbl

[2] Krylov N. V., Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics, 12, Amer. Math. Soc., Providence, RI, 1996, xii+164 pp. | Zbl

[3] Lieberman G. M., Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996, xi+439 pp. | Zbl

[4] Evans L. C., Partial Differential Equations, Graduate Studies in Mathematics, 19, Amer. Math. Soc., Providence, RI, 2010, xxi+749 pp. | Zbl

[5] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983, viii+279 pp. | DOI | Zbl

[6] Guikhman I., Skorokhod A., Introduction À La Théorie Des Processus Aléatoires [Introduction to the Theory of Random Processes], Mir, Moscow, 1980, 557 pp. (In French) | Zbl | Zbl

[7] Freidlin M. I., Wentzell A. D., Random Perturbations of Dynamical Systems, Grundlehren der Mathematischen Wissenschaften, 260, Springer, Berlin, 2012, xxviii+458 pp. | DOI | Zbl

[8] Taleb L., Selvaduray S., Fujita Yashima H., “Approximation par une moyenne locale de la solution de l'équation de transport-diffusion”, Afr. Math. Ann., 8 (2020), 71–90 (In French) | Zbl

[9] Smaali H., Fujita Yashima H., “Une généralisation de l'approximation par une moyenne locale de la solution de l'équation de transport-diffusion”, Afr. Math. Ann., 9 (2021), 89–108 (In French) | Zbl

[10] Ait Mahiout L., Fujita Yashima H., “Convergence de la solution d'une équation de transport-diffusion vers la solution d’une équation de transport”, Afr. Math. Ann., 10 (2023), 105–124 (In French) | Zbl

[11] Fujita Yashima H., Ait Mahiout L., “Convergence of solution of transport-diffusion system to that of transport system”, Vestn. Buryat. gos. univ. Mat., inform. [Bull. Buryat State Univ. Math., Inform.], 2023, no. 1, 22–36 (In Russian) | DOI

[12] Aouaouda M., Ayadi A., Fujita Yashima H., “Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:2 (2022), 222–258 (In Russian) | DOI

[13] Gherdaoui R., Taleb L., Selvaduray S., “Convergence of the heat kernel approximated solutions of the transport-diffusion equation in the half-space”, J. Math. Anal. Appl., 527:2 (2023), 127507 | DOI

[14] Gherdaoui R., Selvaduray S., Fujita Yashima H., “Convergence of approximate solutions for the transport-diffusion equation in the half-space with Neumann condition”, Izv. Irkutsk. Gos. Univ. Ser. Mat. [Bull. Irkutsk State Univ. Ser. Math.], 48 (2024), 64–79 (In Russian) | DOI