Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_3_a0, author = {A. Khalouta}, title = {Khalouta transform via different fractional derivative operators}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {407--425}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a0/} }
TY - JOUR AU - A. Khalouta TI - Khalouta transform via different fractional derivative operators JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 407 EP - 425 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a0/ LA - en ID - VSGTU_2024_28_3_a0 ER -
%0 Journal Article %A A. Khalouta %T Khalouta transform via different fractional derivative operators %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 407-425 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a0/ %G en %F VSGTU_2024_28_3_a0
A. Khalouta. Khalouta transform via different fractional derivative operators. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 3, pp. 407-425. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_3_a0/
[1] Chen Y., Moore K. L., “Analytical stability bound for a class of delayed fractional-order dynamic systems”, Nonlinear Dyn., 29 (2002), 191–200 | DOI | MR | Zbl
[2] Friedrich C., “Relaxation and retardation functions of the Maxwell model with fractional derivatives”, Rheol. Acta, 30 (1991), 151–158 | DOI
[3] Khalouta A., “The existence and uniqueness of solution for fractional Newel–Whitehead–Segel equation within Caputo–Fabrizio fractional operator”, Appl. Appl. Math., 16:2 (2021), 894–909 https://digitalcommons.pvamu.edu/aam/vol16/iss2/7/ | MR | Zbl
[4] Khalouta A., “A novel representation of numerical solution for fractional Bratu-type equation”, Adv. Stud.: Euro-Tbil. Math. J., 15:1 (2022), 93–109 | DOI | MR | Zbl
[5] Magin R. L., Ingo C., Colon-Perez L., et al., “Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy”, Microporous Mesoporous Mater., 178 (2013), 39–43 | DOI
[6] Watugula G. K., “Sumudu transform: A new integral transform to solve differential equations and control engineering problems”, Int. J. Math. Educ. Sci. Technol., 24:1 (1993), 35–43 | DOI | MR | Zbl
[7] Khan Z. H., Khan W. A., “N-transform – properties and applications”, NUST J. Eng. Sci, 1:1 (2008), 127–133
[8] Elzaki T. M., “The new integral transform “Elzaki transform””, Glob. J. Pure Appl. Math., 7:1 (2011), 57–64 https://www.ripublication.com/gjpamv7/gjpamv7n1_7.pdf
[9] Atangana A., Kiliçman A., “A novel integral operator transform and its application to some FODE and FPDE with some kind of singularities”, Math. Probl. Eng., 2013, 531984 | DOI | MR | Zbl
[10] Srivastava H. M., Luo M., Raina R. K., “A new integral transform and its applications”, Acta Math. Sci., Ser. B, Engl. Ed., 35:6 (2015), 1386–1400 | DOI | MR | Zbl
[11] Zafar Z. U. A., “ZZ transform method”, Int. J. Adv. Eng. Glob. Technol., 4:1 (2016), 1605–1611
[12] Ramadan M., Raslan K. R., El-Danaf T., Hadhoud A., “On a new general integral transform: Some properties and remarks”, J. Math. Comput. Sci., 6:1 (2016), 103–109 https://scik.org/index.php/jmcs/article/view/2392
[13] Barnes B., “Polynomial integral transform for solving differential equations”, Eur. J. Pure Appl. Math., 9:2 (2016), 140–151 http://www.ejpam.com/index.php/ejpam/article/view/2531 | MR | Zbl
[14] Yang X. J., “A new integral transform method for solving steady heat-transfer problem”, Thermal Science, 20, Suppl. 3 (2016), S639–S642 | DOI
[15] Aboodh K. S., Abdullahi I., Nuruddeen R. I., “On the Aboodh transform connections with some famous integral transforms”, Int. J. Eng. Inf. Syst., 1:9 (2017), 143–151 http://ijeais.org/wp-content/uploads/2017/11/IJEAIS171116.pdf
[16] Rangaig N., Minor N., Penonal G., et al., “On another type of transform called Rangaig transform”, Int. J. Partial Differ. Equ. Appl., 5:1 (2017), 42–48 | DOI
[17] Maitama S., Zhao W., “New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations”, Int. J. Anal. Appl., 17:2 (2019), 167–190, arXiv: [math.GM] 1904.11370 | DOI | MR | Zbl
[18] Khalouta A., “A new exponential type kernel integral transform: Khalouta transform and its applications”, Math. Montisnigri, 57 (2023), 5–23 | DOI | MR | Zbl
[19] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, xv+523 pp | DOI | MR | Zbl
[20] Caputo M., Fabrizio M., “A new definition of fractional derivative without singular kernel”, Progr. Fract. Differ. Appl., 1:2 (2015), 73–85 https://www.naturalspublishing.com/files/published/0gb83k287mo759.pdf
[21] Losada J., Nieto J. J., “Properties of a new fractional derivative without singular kernel”, Progr. Fract. Differ. Appl., 1:2 (2015), 87–92 https://www.naturalspublishing.com/files/published/2j1ns3h8o2s789.pdf
[22] Atangana A., Baleanu D., “New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model”, Thermal Science, 20:2 (2016), 763–769, arXiv: [math.GM] 1602.03408 | DOI | MR
[23] Rawashdeh M. S., Al-Jammal H., “Theories and applications of the inverse fractional natural transform method”, Adv. Differ. Equ., 2018 (2018), 222 | DOI | MR | Zbl
[24] Bodkhe D. S., Panchal S. K., “On Sumudu transform of fractional derivatives and its applications to fractional differential equations”, Asian J. Math. Comp. Res., 11:1 (2016), 69–77 https://ikprress.org/index.php/AJOMCOR/article/view/380
[25] Aruldoss R., Devi R. A., “Aboodh transform for solving fractional differential equations”, Glob. J. Pure Appl. Math., 16:2 (2020), 145–153 https://www.ripublication.com/gjpam20/gjpamv16n2_01.pdf | MR
[26] Belgacem R., Baleanu D., Bokhari A., “Shehu transform and applications to Caputo–Fractional differential equations”, Int. J. Anal. Appl., 17:6 (2019), 917–927 | DOI
[27] Toprakseven Ş., “The existence and uniqueness of initial-boundary value problems of the fractional Caputo–Fabrizio differential equations”, Univers. J. Math. Appl., 2:2 (2019), 100–106 | DOI
[28] Akgul A., Özturk G., “Application of the Sumudu transform to some equations with fractional derivatives”, Sigma J. Eng. Nat. Sci., 41:6 (2023), 1132–1143 | DOI
[29] Bokhari A., Baleanub D., Belgacem R., “Application of Shehu transform to Atangana–Baleanu derivatives”, J. Math. Comput. Sci., 20:2 (2020), 101–107 | DOI
[30] Jena R. M., Chakraverty S., Baleanu D., Alqurashi M. M., “New aspects of ZZ transform to fractional operators with Mittag–Leffler kernel”, Front. Phys., 8 (2020), 352 | DOI