Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_2_a7, author = {Yu. V. Tsyganova and A. V. Tsyganov and A. N. Kuvshinova and D. V. Galushkina}, title = {Identification of parameters of convection--diffusion--reaction model and unknown boundary conditions in the presence of~random noise in measurements}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {345--366}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a7/} }
TY - JOUR AU - Yu. V. Tsyganova AU - A. V. Tsyganov AU - A. N. Kuvshinova AU - D. V. Galushkina TI - Identification of parameters of convection--diffusion--reaction model and unknown boundary conditions in the presence of~random noise in measurements JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 345 EP - 366 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a7/ LA - ru ID - VSGTU_2024_28_2_a7 ER -
%0 Journal Article %A Yu. V. Tsyganova %A A. V. Tsyganov %A A. N. Kuvshinova %A D. V. Galushkina %T Identification of parameters of convection--diffusion--reaction model and unknown boundary conditions in the presence of~random noise in measurements %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 345-366 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a7/ %G ru %F VSGTU_2024_28_2_a7
Yu. V. Tsyganova; A. V. Tsyganov; A. N. Kuvshinova; D. V. Galushkina. Identification of parameters of convection--diffusion--reaction model and unknown boundary conditions in the presence of~random noise in measurements. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 2, pp. 345-366. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a7/
[1] Ho B. L., Kalman R. E., “Effective construction of linear state-variable models from input/output functions”, Regelungstechnik, 14:1-12 (1966), 545–548 | DOI | Zbl
[2] Åström K.-J., Bohlin T., “Numerical identification of linear dynamic systems from normal operating records”, IFAC Proceedings Volumes, 2:2 (1965), 96–111 | DOI
[3] Ljung L., System Identification: Theory for the User, Prentice-Hall, Upper Saddle River, NJ, 1999, xxii+609 pp.
[4] Ljung L., “Perspectives on system identification”, Ann. Rev. Control, 34:1 (2010), 1–12 | DOI
[5] Tsypkin Ya. Z., Informatsionnaia teoriia identifikatsii [Information Theory of Identification], Nauka, Moscow, 1995, 336 pp. (In Russian)
[6] Mehra R., “Approaches to adaptive filtering”, IEEE Trans. Autom. Control, 17:5 (1972), 693–698 | DOI | Zbl
[7] Aström K. J., “Maximum likelihood and prediction error methods”, Automatica, 16:5 (1980), 551–574 | DOI | Zbl
[8] Zhang Z., “Parameter estimation techniques: a tutorial with application to conic fitting”, Image Vision Comp., 15:1 (1997), 59–76 | DOI
[9] Wilczyński M., “Minimax prediction in the linear model with a relative squared error”, Stat. Papers, 53:1 (2012), 151–164 | DOI | Zbl
[10] Semushin I. V., “Adaptation in stochastic dynamic systems — Survey and new results II”, Int. J. Commun. Netw. Syst. Sci., 4:4 (2011), 266–285 | DOI
[11] Semushin I. V., Tsyganova J. V., “Adaptation in stochastic dynamic systems — Survey and new results IV: Seeking minimum of API in parameters of data”, Int. J. Commun. Netw. Syst. Sci., 6:12 (2013), 513–518 | DOI
[12] Ljung L., “Convergence analysis of parametric identification methods”, IEEE Trans. Autom. Control, 23:5 (1978), 770–783 | DOI | Zbl
[13] Bastin G., Gevers M., “Stable adaptive observers for nonlinear time-varying systems”, IEEE Trans. Autom. Control, 33:7 (1988), 650–658 | DOI | Zbl
[14] Marino R., Tomei P., “Global adaptive observers for nonlinear systems via filtered transformations”, IEEE Trans. Autom. Control, 37:8 (1992), 1239–1245 | DOI | Zbl
[15] Vasil'ev V. P., Chislennye metody dlia resheniia ekstremal'nykh zadach [Numerical Methods for Solving Extremal Problems], Nauka, Moscow, 1988, 550 pp. (In Russian) | Zbl
[16] Gillijns S., De Moor B., “Unbiased minimum-variance input and state estimation for linear discrete-time systems”, Automatica, 43:1 (2007), 111–116 | DOI | Zbl
[17] Kitanidis P. K., “Unbiased minimum-variance linear state estimation”, Automatica, 23:6 (1987), 775–778 | DOI | Zbl
[18] Darouach M., Zasadzinski M., “Unbiased minimum varianceestimation for systems with unknown exogenous inputs”, Automatica, 33:4 (1997), 717–719 | DOI | Zbl
[19] Isaev S. I., Kozhinov I. A., Kofanov V. I., et al., Teoriia teplomassoobmena [Theory of Heat and Mass Transfer], Bauman Moscow State Techn. Univ., Moscow, 2018, 462 pp.
[20] Simbirskiy G. D., Lantrat V. K., “Application of the Kalman digital filter for parametric identification high-temperature thermocouple”, Autom. Electron. Modern Technology, 2017, no. 11, 68–75 (In Russian)
[21] Pilipenko N. V., Zarichnyak Yu. P., Ivanov V. A., Khalyavin A. M., “Parametric identification of differencial-difference models of heat transfer in one-dimensional bodies based on Kalman filter algorithms”, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 20:4 (2020), 584–588 (In Russian) | DOI
[22] Matveev M. G., Kopytin A. V., Sirota E. A., “Combined method for identifying the parameters of a distributed dynamic model”, Proc. IV Int. Conf. (ITNT, 2018), Samara, 2018, 1651–1657 (In Russian)
[23] Pilipenko N. V., Primenenie fil'tra Kalmana v nestatsionarnoi teplometrii [Applying the Kalman Filter in Non-Stationary Heat Metering], ITMO Univ., St. Petersburg, 2017, 36 pp. (In Russian)
[24] Tsyganov A. V., Tsyganova Yu. V., Kuvshinova A. N., Tapia Garza H. R., “Metaheuristic algorithms for identification of the convection velocity in the convection-diffusion transport model”, CEUR Workshop Proceedings, v. 2258, 2018, 188–196 http://ceur-ws.org/Vol-2258/paper24.pdf
[25] Kuvshinova A. N., “Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements”, Zhurnal SVMO, 21:4 (2019), 469–479 (In Russian) | DOI | Zbl
[26] Kuvshinova A. N., Tsyganov A. V., Tsyganova Yu. V., Tapia Garza H. R., “Parameter identification algorithm for convection-diffusion transport model”, J. Phys.: Conf. Ser., 1745 (2021), 012110 | DOI
[27] Kuvshinova A. N., Tsyganov A. V., Tsyganova Yu. V., “Mathematical modeling of parameter identification process of convection-diffusion transport models using the SVD-based Kalman filter”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021), 716–737 (In Russian) | DOI | Zbl
[28] Kuvshinova A. N., Galushkina D. V., “On the square-root modification of the Gillijns – De Moor algorithm”, Uch. Zap. Ul'yanovsk. Gos. Univ. Ser. Matem. Inform. Tekhn., 2022, no. 1, 17–22 (In Russian)
[29] Tsyganov A. V., Tsyganova Yu. V., Kuvshinova A. N., “Dynamic identification of boundary conditions for convection-diffusion transport model subject to noisy measurements”, J. Phys.: Conf. Ser., 1368:4 (2019), 042029 | DOI
[30] Mazo A. B., Vychislitel'naia gidrodinamika [Computational Fluid Dynamics], Chast' 1. Matematicheskie modeli, setki i setochnye skhemy [Part 1. Mathematical Models, Grids and Grid Schemes], Kazan Univ., Kazan, 2018, 165 pp. (In Russian)
[31] Maybeck P. S., Stochastic Models, Estimation, and Control, v. 1, Mathematics in Science and Engineering, 141, Academic Press, New York, San Francisco, London, 1979, xix+423 pp. | Zbl
[32] Grewal M. S., Andrews A. P., Kalman Filtering. Theory and Practice with MATLAB, John Wiley and Sons, Hoboken, NJ, 2015, xvii+617 pp. | DOI | Zbl