Keywords: parameter identification, quadratic identification criterion, discrete-time linear state-space stochastic model, estimation of unknown inputs
@article{VSGTU_2024_28_2_a7,
author = {Yu. V. Tsyganova and A. V. Tsyganov and A. N. Kuvshinova and D. V. Galushkina},
title = {Identification of parameters of convection{\textendash}diffusion{\textendash}reaction model and unknown boundary conditions in the presence of~random noise in measurements},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {345--366},
year = {2024},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a7/}
}
TY - JOUR AU - Yu. V. Tsyganova AU - A. V. Tsyganov AU - A. N. Kuvshinova AU - D. V. Galushkina TI - Identification of parameters of convection–diffusion–reaction model and unknown boundary conditions in the presence of random noise in measurements JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 345 EP - 366 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a7/ LA - ru ID - VSGTU_2024_28_2_a7 ER -
%0 Journal Article %A Yu. V. Tsyganova %A A. V. Tsyganov %A A. N. Kuvshinova %A D. V. Galushkina %T Identification of parameters of convection–diffusion–reaction model and unknown boundary conditions in the presence of random noise in measurements %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 345-366 %V 28 %N 2 %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a7/ %G ru %F VSGTU_2024_28_2_a7
Yu. V. Tsyganova; A. V. Tsyganov; A. N. Kuvshinova; D. V. Galushkina. Identification of parameters of convection–diffusion–reaction model and unknown boundary conditions in the presence of random noise in measurements. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 2, pp. 345-366. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a7/
[1] Ho B. L., Kalman R. E., “Effective construction of linear state-variable models from input/output functions”, Regelungstechnik, 14:1-12 (1966), 545–548 | DOI | Zbl
[2] Åström K.-J., Bohlin T., “Numerical identification of linear dynamic systems from normal operating records”, IFAC Proceedings Volumes, 2:2 (1965), 96–111 | DOI
[3] Ljung L., System Identification: Theory for the User, Prentice-Hall, Upper Saddle River, NJ, 1999, xxii+609 pp.
[4] Ljung L., “Perspectives on system identification”, Ann. Rev. Control, 34:1 (2010), 1–12 | DOI
[5] Tsypkin Ya. Z., Informatsionnaia teoriia identifikatsii [Information Theory of Identification], Nauka, Moscow, 1995, 336 pp. (In Russian)
[6] Mehra R., “Approaches to adaptive filtering”, IEEE Trans. Autom. Control, 17:5 (1972), 693–698 | DOI | Zbl
[7] Aström K. J., “Maximum likelihood and prediction error methods”, Automatica, 16:5 (1980), 551–574 | DOI | Zbl
[8] Zhang Z., “Parameter estimation techniques: a tutorial with application to conic fitting”, Image Vision Comp., 15:1 (1997), 59–76 | DOI
[9] Wilczyński M., “Minimax prediction in the linear model with a relative squared error”, Stat. Papers, 53:1 (2012), 151–164 | DOI | Zbl
[10] Semushin I. V., “Adaptation in stochastic dynamic systems — Survey and new results II”, Int. J. Commun. Netw. Syst. Sci., 4:4 (2011), 266–285 | DOI
[11] Semushin I. V., Tsyganova J. V., “Adaptation in stochastic dynamic systems — Survey and new results IV: Seeking minimum of API in parameters of data”, Int. J. Commun. Netw. Syst. Sci., 6:12 (2013), 513–518 | DOI
[12] Ljung L., “Convergence analysis of parametric identification methods”, IEEE Trans. Autom. Control, 23:5 (1978), 770–783 | DOI | Zbl
[13] Bastin G., Gevers M., “Stable adaptive observers for nonlinear time-varying systems”, IEEE Trans. Autom. Control, 33:7 (1988), 650–658 | DOI | Zbl
[14] Marino R., Tomei P., “Global adaptive observers for nonlinear systems via filtered transformations”, IEEE Trans. Autom. Control, 37:8 (1992), 1239–1245 | DOI | Zbl
[15] Vasil'ev V. P., Chislennye metody dlia resheniia ekstremal'nykh zadach [Numerical Methods for Solving Extremal Problems], Nauka, Moscow, 1988, 550 pp. (In Russian) | Zbl
[16] Gillijns S., De Moor B., “Unbiased minimum-variance input and state estimation for linear discrete-time systems”, Automatica, 43:1 (2007), 111–116 | DOI | Zbl
[17] Kitanidis P. K., “Unbiased minimum-variance linear state estimation”, Automatica, 23:6 (1987), 775–778 | DOI | Zbl
[18] Darouach M., Zasadzinski M., “Unbiased minimum varianceestimation for systems with unknown exogenous inputs”, Automatica, 33:4 (1997), 717–719 | DOI | Zbl
[19] Isaev S. I., Kozhinov I. A., Kofanov V. I., et al., Teoriia teplomassoobmena [Theory of Heat and Mass Transfer], Bauman Moscow State Techn. Univ., Moscow, 2018, 462 pp.
[20] Simbirskiy G. D., Lantrat V. K., “Application of the Kalman digital filter for parametric identification high-temperature thermocouple”, Autom. Electron. Modern Technology, 2017, no. 11, 68–75 (In Russian)
[21] Pilipenko N. V., Zarichnyak Yu. P., Ivanov V. A., Khalyavin A. M., “Parametric identification of differencial-difference models of heat transfer in one-dimensional bodies based on Kalman filter algorithms”, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 20:4 (2020), 584–588 (In Russian) | DOI
[22] Matveev M. G., Kopytin A. V., Sirota E. A., “Combined method for identifying the parameters of a distributed dynamic model”, Proc. IV Int. Conf. (ITNT, 2018), Samara, 2018, 1651–1657 (In Russian)
[23] Pilipenko N. V., Primenenie fil'tra Kalmana v nestatsionarnoi teplometrii [Applying the Kalman Filter in Non-Stationary Heat Metering], ITMO Univ., St. Petersburg, 2017, 36 pp. (In Russian)
[24] Tsyganov A. V., Tsyganova Yu. V., Kuvshinova A. N., Tapia Garza H. R., “Metaheuristic algorithms for identification of the convection velocity in the convection-diffusion transport model”, CEUR Workshop Proceedings, v. 2258, 2018, 188–196 http://ceur-ws.org/Vol-2258/paper24.pdf
[25] Kuvshinova A. N., “Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements”, Zhurnal SVMO, 21:4 (2019), 469–479 (In Russian) | DOI | Zbl
[26] Kuvshinova A. N., Tsyganov A. V., Tsyganova Yu. V., Tapia Garza H. R., “Parameter identification algorithm for convection-diffusion transport model”, J. Phys.: Conf. Ser., 1745 (2021), 012110 | DOI
[27] Kuvshinova A. N., Tsyganov A. V., Tsyganova Yu. V., “Mathematical modeling of parameter identification process of convection-diffusion transport models using the SVD-based Kalman filter”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021), 716–737 (In Russian) | DOI | Zbl
[28] Kuvshinova A. N., Galushkina D. V., “On the square-root modification of the Gillijns – De Moor algorithm”, Uch. Zap. Ul'yanovsk. Gos. Univ. Ser. Matem. Inform. Tekhn., 2022, no. 1, 17–22 (In Russian)
[29] Tsyganov A. V., Tsyganova Yu. V., Kuvshinova A. N., “Dynamic identification of boundary conditions for convection-diffusion transport model subject to noisy measurements”, J. Phys.: Conf. Ser., 1368:4 (2019), 042029 | DOI
[30] Mazo A. B., Vychislitel'naia gidrodinamika [Computational Fluid Dynamics], Chast' 1. Matematicheskie modeli, setki i setochnye skhemy [Part 1. Mathematical Models, Grids and Grid Schemes], Kazan Univ., Kazan, 2018, 165 pp. (In Russian)
[31] Maybeck P. S., Stochastic Models, Estimation, and Control, v. 1, Mathematics in Science and Engineering, 141, Academic Press, New York, San Francisco, London, 1979, xix+423 pp. | Zbl
[32] Grewal M. S., Andrews A. P., Kalman Filtering. Theory and Practice with MATLAB, John Wiley and Sons, Hoboken, NJ, 2015, xvii+617 pp. | DOI | Zbl