Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_2_a6, author = {A. {\CYRM}. Uzdenova}, title = {Mathematical modeling of mass transfer in electromembrane systems in galvanodynamic mode, taking into account electroconvection and the dissociation/recombination reaction of water molecules}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {324--344}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a6/} }
TY - JOUR AU - A. М. Uzdenova TI - Mathematical modeling of mass transfer in electromembrane systems in galvanodynamic mode, taking into account electroconvection and the dissociation/recombination reaction of water molecules JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 324 EP - 344 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a6/ LA - ru ID - VSGTU_2024_28_2_a6 ER -
%0 Journal Article %A A. М. Uzdenova %T Mathematical modeling of mass transfer in electromembrane systems in galvanodynamic mode, taking into account electroconvection and the dissociation/recombination reaction of water molecules %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 324-344 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a6/ %G ru %F VSGTU_2024_28_2_a6
A. М. Uzdenova. Mathematical modeling of mass transfer in electromembrane systems in galvanodynamic mode, taking into account electroconvection and the dissociation/recombination reaction of water molecules. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 2, pp. 324-344. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a6/
[1] Ran J., Wu L., He Y., et al., “Ion exchange membranes: New developments and applications”, J. Membr. Sci., 522 (2017), 267–291 | DOI
[2] Slouka Z., Senapati S., Chang H. C., “Microfluidic systems with ion-selective membranes”, Annu. Rev. Anal. Chem., 7 (2014), 317–335 | DOI
[3] Gurreri L., Tamburini A., Cipollina A., Micale G., “Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives”, Membranes, 10:7 (2020), 146 | DOI
[4] Rubinshtein I., Zaltzman B., Pretz J., Linder C., “Experimental verification of the electroosmotic mechanism of overlimiting conductance through a cation exchange electrodialysis membrane”, Russ. J. Electrochem., 38:8 (2002), 853–863 | DOI
[5] Pismenskaya N. D., Nikonenko V. V., Belova E. I., et al., “Coupled convection of solution near the surface of ion-exchange membranes in intensive current regimes”, Russ. J. Electrochem., 43:3 (2007), 307–327 | DOI
[6] Nikonenko V. V., Mareev S. A., Pis'menskaya N. D., et al., “Effect of electroconvection and its use in intensifying the mass transfer in electrodialysis (Review)”, Russ. J. Electrochem., 53:10 (2017), 1122–1144 | DOI | DOI
[7] Mani A., Wang K. M., “Electroconvection near electrochemical interfaces: Experiments, modeling, and computation”, Annu. Rev. Fluid Mech., 52 (2020), 509–529 | DOI
[8] Simons R., “Strong electric field effects on proton transfer between membranebound amines and water”, Nature, 280 (1979), 824–826 | DOI
[9] Frilette V. J., “Electrogravitational transport at synthetic ion exchange membrane surfaces”, J. Phys. Chem., 61:2 (1957), 168–174 | DOI
[10] Zabolotskii V. I., Nikonenko V. V., Korzhenko N. M., et al., “Mass transfer of salt ions in an electromembrane system with violated electroneutrality in the diffusion layer: The effect of a heterolytic dissociation of water”, Russ. J. Electrochem., 38:8 (2002), 810–818 | DOI
[11] Uzdenova A. M., “Mathematical modeling of non-stationary ion transport in electromembrane systems given the dissociation (recombination) reaction of water molecules in galvanodynamic mode”, Perspektivy Nauki, 11:170 (2023), 104–112 (In Russian)
[12] Mishchuk N. A., “Concentration polarization of interface and non-linear electrokinetic phenomena”, Adv. Colloid Interface Sci., 160:1–2 (2010), 16–39 | DOI
[13] Porozhnyy M. V., Shkirskaya S. A., Butylskii D. Y., et al., “Physicochemical and electrochemical characterization of nafion-type membranes with embedded silica nanoparticles: effect of functionalization”, Electrochim. Acta, 370 (2021), 137689 | DOI
[14] Grossman G., “Water dissociation effects in ion transport through composite membrane”, J. Phys. Chem., 80:14 (1976), 1616–1625 | DOI
[15] Rubinstein I., “A diffusional model of “water splitting” in electrodialysis”, J. Phys. Chem., 81:14 (1977), 1431–1436 | DOI
[16] Rubinstein I., Shtilman L., “Voltage against current curves of cation exchange membranes”, J. Chem. Soc., Faraday Trans. 2, 75 (1979), 231–246 | DOI
[17] Kovalenko A. V., Urtenov M. Kh., Seidova N. M., Pismensky A. V., “The influence of reaction of dissociation/recombination of molecules of water on transporting electrolyte 1:1 in the membrane systems in the diffusion layer. Part 1. Mathematical model”, Nauchnyi Zhurnal KubGAU, 2016, no. 121, 122 (In Russian) | DOI
[18] Kovalenko A. V., Urtenov M. Kh., Seidova N. M., Pismensky A. V., “The influence of reaction of dissociation/recombination of molecules of water on transporting electrolyte 1:1 in the membrane systems in the diffusion layer. Part 2. Asymptotic analysis”, Nauchnyi Zhurnal KubGAU, 2016, no. 122, 017 (In Russian) | DOI
[19] Urtenov M. K., Pismensky A. V., Nikonenko V. V., Kovalenko A. V., “Mathematical modeling of ion transport and water dissociation at the ion-exchange membrane/solution interface in intense current regimes”, Pet. Chem., 58:2 (2018), 121–129 | DOI | DOI
[20] Urtenov M., Gudza V., Shkorkina I., Chubyr N., “Theoretical analysis of the stationary transport of 1:1 salt ions in a cross-section of a desalination channel, taking into account the non-catalytic dissociation/recombination reaction of water molecules”, Membranes, 10:11 (2020), 342 | DOI
[21] Kovalenko A. V., Nikonenko V. V., Chubyr N. O., Urtenov M. Kh., “Mathematical modeling of electrodialysis of a dilute solution with accounting for water dissociation-recombination reactions”, Desalination, 550 (2023), 116398 | DOI
[22] Kovalenko A. V., Urtenov M. Kh., Chubyr N. O., et al., “Mathematical modeling of the influence of the main temperature effects in stationary transport of ions of salt in the diffusion layer”, Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 15:3 (2018), 78–86 (In Russian) | DOI
[23] Kovalenko A. V., Urtenov M. Kh., Chubyr N. O., et al., “Influence of temperature effects associated with the dissociation/recombination reaction of water molecules and joule heating of the solution on the stationary transport of salt ions in the diffusion layer”, Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 15:4 (2018), 67–84 (In Russian) | DOI
[24] Nikonenko V., Urtenov M., Mareev S., Pourcelly G., “Mathematical modeling of the effect of water splitting on ion transfer in the depleted diffusion layer near an ion-exchange membrane”, Membranes, 10:2 (2020), 22 | DOI
[25] Kovalenko A. V., “Influence of the water dissociation to the electroconvection in membrane systems”, Kondens. Sredy Mezhfaz. Gran., 16:3 (2014), 288–293 (In Russian)
[26] Kovalenko A., Urtenov M., Chekanov V. Kandaurova N., “Theoretical analysis of the influence of spacers on salt ion transport in electromembrane systems considering the main coupled effects”, Membranes, 14:1 (2024), 20 | DOI
[27] Newman J., Thomas-Alyea K. E., Electrochemical Systems, John Wiley and Sons, NJ, USA, 2004, xx+647 pp.
[28] Uzdenova A. M., “2D mathematical modelling of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells in galvanodynamic mode”, Membranes, 9:3 (2019), 39 | DOI
[29] Uzdenova A. M., “Time-dependent two-dimensional model of overlimiting mass transfer in electromembrane systems based on the Nernst–Planck, displacement current and Navier–Stokes equations”, Computation, 11:10 (2023), 205 | DOI
[30] Cohen H., Cooley J. W., “The numerical solution of the time-dependent Nernst–Planck equations”, Biophys. J., 5:2 (1965), 145–162 | DOI
[31] Brumleve T. R., Buck R. P., “Numerical solution of the Nernst–Planck and Poisson equation system with applications to membrane electrochemistry and solid state physics”, J. Electroanal. Chem., 90:1 (1978), 1–31 | DOI
[32] COMSOL Multiphysics Reference Manual https://doc.comsol.com/6.1/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf
[33] Nikonenko V. V., Vasil'eva V. I., Akberova E. M., et al., “Competition between diffusion and electroconvection at an ion-selective surface in intensive current regimes”, Adv. Colloid Interface Sci., 235 (2016), 233–246 | DOI
[34] de Valenc̨a J. C., Wagterveld R. M., Lammertink R. G. H., Tsai P. A., “Dynamics of microvortices induced by ion concentration polarization”, Phys. Rev. E, 92:3 (2015), 031003 | DOI
[35] Filippov A. N., Akberova E. M., Vasil'eva V. I., “Study of the thermochemical effect on the transport and structural characteristics of heterogeneous ion-exchange membranes by combining the cell model and the fine-porous membrane model”, Polymers, 15:16 (2023), 3390 | DOI
[36] Urtenov M. A. K., Kirillova E. V., Seidova N. M., Nikonenko V. V., “Decoupling of the Nernst–Planck and Poisson equations. Application to a membrane system at overlimiting currents”, J. Phys. Chem. B, 111:51 (2007), 14208–14222 | DOI
[37] Krol J. J., Wessling M., Strathmann H., “Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes”, J. Membr. Sci., 162:1–2 (1999), 155–164 | DOI