Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_2_a2, author = {V. O. Lukashchuk and S. Yu. Lukashchuk}, title = {On the calculation of approximate symmetries of fractional differential equations}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {247--266}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a2/} }
TY - JOUR AU - V. O. Lukashchuk AU - S. Yu. Lukashchuk TI - On the calculation of approximate symmetries of fractional differential equations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 247 EP - 266 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a2/ LA - ru ID - VSGTU_2024_28_2_a2 ER -
%0 Journal Article %A V. O. Lukashchuk %A S. Yu. Lukashchuk %T On the calculation of approximate symmetries of fractional differential equations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 247-266 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a2/ %G ru %F VSGTU_2024_28_2_a2
V. O. Lukashchuk; S. Yu. Lukashchuk. On the calculation of approximate symmetries of fractional differential equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 2, pp. 247-266. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a2/
[1] Ovsyannikov L. V., Group analysis of differential equations, Academic Press, New York, 1982, xvi+416 pp. | Zbl | Zbl
[2] Ibragimov N. H., Transformation Groups Applied to Mathematical Physics, Mathematics and Its Applications (Soviet Series), 3, D. Reidel Publ., Dordrecht, 1985, xv+394 pp. | Zbl | Zbl
[3] Grigoriev Yu. N., Ibragimov N. H., Kovalev V. F., Meleshko S. V., Symmetries of Integro-Differential Equations. With Applications in Mechanics and Plasma Physics, Lecture Notes in Physics, 806, Springer, Dordrecht, 2010, xiii+305 pp. | DOI | Zbl
[4] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon Breach Sci. Publishers, New York, 1993, xxxvi+976 pp. | Zbl | Zbl
[5] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, xv+523 pp. | DOI | Zbl
[6] Uchaikin V. V., Metod drobnykh proizvodnykh [Method of Fractional Derivatives], Artishok, Ulyanovsk, 2008, 512 pp. (In Russian)
[7] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu., “Symmetries and group invariant solutions of fractional ordinary differential equations”, Handbook of Fractional Calculus with Applications, v. 2, Fractional Differential Equations, eds. A. Kochubei, Yu. Luchko, De Gruyter, Berlin, 2019, 65–90 | DOI | Zbl
[8] Lukashchuk S. Yu., “On the property of linear autonomy for symmetries of fractional differential equations and systems”, Mathematics, 10:13 (2022), 2319 | DOI
[9] Hashemi M. S., Baleanu D., Lie Symmetry Analysis of Fractional Differential Equation, CRC Press, Boca Raton, 2020, xiii+208 pp. | DOI | Zbl
[10] Gazizov R. K., Lukashchuk S. Yu., “Approximations of fractional differential equations and approximate symmetries”, IFAC-PapersOnLine, 50:1 (2017), 14022–14027 | DOI
[11] Gazizov R. K., Lukashchuk S. Yu., “Higher-order symmetries of a time-fractional anomalous diffusion equation”, Mathematics, 9:3 (2021), 216 | DOI
[12] Baikov V. A., Gazizov R. K., Ibragimov N. Kh., “Approximate symmetries”, Math. USSR-Sb., 64:2 (1989), 427–441 | DOI | MR | Zbl
[13] Baikov V. A., Gazizov R. K., Ibragimov N. H., “Perturbation methods in group analysis”, J. Soviet Math., 55:1 (1991), 1450–1490 | DOI | MR | Zbl
[14] Ibragimov N. H., Transformation groups and Lie algebras, World Scientific, Hackensack, 2013, x+185 pp. | DOI | Zbl
[15] Lukashchuk S. Yu, “An approximate group classification of a perturbed subdiffusion equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:4 (2016), 603–619 (In Russian) | DOI | Zbl
[16] Lukashchuk V. O., Gavryushina L. O., “Approximate Symmetries and Conservation Laws of Fractional Differential Generalization of the Burgers Equation”, Math. Math. Model., 2019, no. 5, 1–14 (In Russian) | DOI
[17] Lashkarian E., Motamednezhad A., Hejazi S. R., “Invariance properties and conservation laws of perturbed fractional wave equation”, Eur. Phys. J. Plus, 136 (2021), 615 | DOI
[18] Lashkarian E., Motamednezhad A., Hejazi S. R., “Group analysis, invariance results, exact solutions and conservation laws of the perturbed fractional Boussinesq equation”, Int. J. Geom. Methods Mod. Phys., 20:1 (2023), 2350013 | DOI
[19] Nadjafikhah M., Mirala M., Chaichi M., “Approximate symmetries and conservation laws of forced fractional oscillator”, Int. J. Nonlinear Anal. Appl., 14:2 (2023), 195–205 | DOI
[20] Tarasov V. E., Zaslavsky G. M., “Dynamics with low-level fractionality”, Physica A, 368:2 (2006), 399–415 | DOI
[21] Tofighi A., Golestani A., “A perturbative study of fractional relaxation phenomena”, Physica A, 387:8–9 (2008), 1807–1817 | DOI
[22] Tofighi A., “An especial fractional oscillator”, Int. J. Stat. Mech., 2013 (2013), 175273 | DOI
[23] Vinogradov A. M., Krasil'shchik I. S., “A method of computing higher symmetries of nonlinear evolution equations, and nonlocal symmetries”, Soviet Math. Dokl., 22:1 (1980), 235–239 | MR | Zbl
[24] Bluman G. W., Reid G. J., Kumei S., “New classes of symmetries of partial differential equations”, J. Math. Phys., 29:4 (1988), 806–811 | DOI | Zbl
[25] Leach P.G.L., Andriopoulos K., “Nonlocal symmetries past, present and future”, Appl. Anal. Discrete Math., 1:1 (2007), 150–171 | Zbl
[26] Akhatov I. Sh., Gazizov R. K., Ibragimov N. Kh., “Nonlocal symmetries. Heuristic approach”, J. Soviet Math., 55:1 (1991), 1401–1450 | DOI | MR | Zbl
[27] Bluman G. W., Cheviakov A. F., Anco S. C., Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, Springer, New York, 2010, xix+398 pp. | DOI | Zbl
[28] Simmetrii i zakony sokhraneniia uravnenii matematicheskoi fiziki [Symmetries and Conservation Laws of Equations of Mathematical Physics], eds. A. M. Vinogradov, I. S. Krasil'shchik, Factorial, Moscow, 1997, 464 pp. (In Russian)
[29] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu., “Fractional differential equations: Change of variables and nonlocal symmetries”, Ufa Math. J., 4:4 (2012), 54–67 | Zbl
[30] Ludu A., “Nonlocal symmetries for time-dependent order differential equations”, Symmetry, 10:12 (2018), 771 | DOI | Zbl