Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_2_a0, author = {L. Chetioui and A. Khalouta}, title = {A new application of {Khalouta} differential transform method and}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {207--222}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a0/} }
TY - JOUR AU - L. Chetioui AU - A. Khalouta TI - A new application of Khalouta differential transform method and JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 207 EP - 222 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a0/ LA - en ID - VSGTU_2024_28_2_a0 ER -
%0 Journal Article %A L. Chetioui %A A. Khalouta %T A new application of Khalouta differential transform method and %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 207-222 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a0/ %G en %F VSGTU_2024_28_2_a0
L. Chetioui; A. Khalouta. A new application of Khalouta differential transform method and. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 2, pp. 207-222. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a0/
[1] Iyiola O. S, Zaman F. D., “A fractional diffusion equation model for cancer tumor”, AIP Advances, 4:10 (2014), 107121 | DOI
[2] Khan H., Tunç C., Khan R.A., et al., “Approximate analytical solutions of space-fractional telegraph equations by Sumudu Adomian decomposition method”, Appl. Appl. Math, 3:2 (2018), 781–802 https://digitalcommons.pvamu.edu/aam/vol13/iss2/12
[3] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, xv+523 pp | DOI | MR | Zbl
[4] Monje C. A., Chen Y. Q., Vinagre B. M., et al., Fractional-order Systems and Controls: Fundamentals and Applications, Advances in Industrial Control, Springer, London, 2010, xxvi+414 pp | DOI | Zbl
[5] Podlubny I., Fractional Differential Equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999, xxiv+340 pp. | Zbl
[6] Pu Y. F., “Fractional differential analysis for texture of digital image”, J. Algorithms Comput. Technol., 1:3 (2007), 357–380 | DOI
[7] Sun H. G., Zhang Y., Baleanu D., et al., “A new collection of real world applications of fractional calculus in science and engineering”, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231 | DOI
[8] Tarasov V. E., Tarasova V. V., “Time-dependent fractional dynamics with memory in quantum and economic physics”, Ann. Phys., 383 (2017), 579–599 | DOI
[9] Zhou Y., Peng L., “Weak solution of the time-fractional Navier–Stokes equations and optimal control”, Comput. Math. Appl., 73:6 (2017), 1016–1027 | DOI
[10] Guo P., “The Adomian decomposition method for a type of fractional differential equations”, J. Appl. Math. Phys., 7:10 (2019), 2459–2466 | DOI
[11] El-Said A., Hammad D., “A reliable treatment of homotopy perturbation method for the sine-Gordon equation of arbitrary (fractional) order”, J. Fract. Calc. Appl., 2 (2012), 1 | Zbl
[12] Al-Zou'bi H., Zurigat H., “Solving nonlinear fractional differential equations using multi-step homotopy analysis method”, An. Univ. Craiova, Ser. Mat. Inf., 41:2 (2014), 190–199 | Zbl
[13] Khalouta A., “On the solutions of nonlinear Caputo–Fabrizio fractional partial differential equations arising in applied mathematics”, J. Prime Res. Math., 18:2 (2022), 42–54 | Zbl
[14] Khalouta A., “A novel representation of numerical solution for fractional Bratu-type equation”, Adv. Stud.: Euro-Tbil. Math. J., 15:1 (2022), 93–109 | DOI | Zbl
[15] Liénard A., “Étude des oscillations entreténues”, Revue Générale De L'éElectricité, 23 (1928), 946–954
[16] Guckenheimer J., “Dynamics of the van der Pol equation”, IEEE Trans. Circuits Syst., 27 (1980), 983–989 | DOI | Zbl
[17] Zhang Z. F., Ding T., Huang H. W., Dong Z. X., Qualitative Theory of Differential Equations, Science Press, Peking, China, 1985
[18] Feng Z., “On explicit exact solutions for the Liénard equation and its applications”, Phys. Lett. A, 293:1–2 (2002), 50–56 | DOI | Zbl
[19] Khalouta A., “A new exponential type kernel integral transform: Khalouta transform and its applications”, Math. Montisnigri, 57 (2023), 5–23 | DOI | Zbl
[20] Cîrnu M., Frumosu F., “Initial value problems for nonlinear differential equations solved by differential transform method”, J. Inf. Syst. Oper. Manag., 3:2 (2009), 102–107
[21] Moon S., Bhosale A., Gajbhiye P., Lonare G., “Solution of non-linear equations by using differential transform method”, Int. J. Math. Stat. Inv., 2:3 (2014), 78–82
[22] Khalouta A., “A new analytical series solution with convergence for non-linear fractional Liénard's equations with Caputo fractional derivative”, Kyungpook Math. J., 62 (2022), 583–593 | DOI