Extended mathematical model of the inverse problem of nuclear gamma-resonance. Reliability and informative of application
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 152-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

Research the properties of iron-based solid solutions by Mössbauer spectroscopy has the problem of interpreting the results of processing experimental data within the traditional mathematical model. Since the disordered solid solutions, for example, as a result of mechanical activation, are consisted of a set of the different local atomic configurations, the corresponding Mössbauer spectra contain a large number of the shifted relative to each other spectral components with close values of the hyperfine interaction parameters. The magnitude and sign of these shift are determined by many factors: the quantitative distribution of atoms of each type in the coordination spheres, the symmetry of their distribution relative to the quantization axis, the possible local shift relative to the average statistical position in the crystallographic structure, etc. In the mathematical model, as a rule, it's not possible to taken into account all these effects of the shift by analytically. The proposed extended mathematical model for describing the Mössbauer spectra of solid solutions makes it possible to take into account the shifts in the spectral components by using Gaussian normal distribution function, as a function of statistical set of local distortions. The width of the Gaussian distribution makes it possible to estimate the degree of local distortions of the crystal lattice that arise due to differences in the sizes of atoms of the mixed components, local distortions of the structure and symmetry of the environment of the resonant atom. The inverse problem of nuclear gamma-resonance is formulated by the Fredholm integral equation of the first kind and is an ill-posed problem with a priori constraints on the desired solution. The introduction of two Gaussian functions with a priori unknown linewidths into the kernel of the integral equation leads to the problem of solving the equation by classical methods. Algorithm for obtaining a reliable solution based on the Tikhonov regularization method with correction of the parameters of the kernel of the integral equation is proposed in this paper. On the examples of the study of real objects, the reliability and informative application of the extended mathematical model of the inverse problem of nuclear gamma-resonance is proved.
Keywords: inverse problem of nuclear gamma-resonance, probability of atomic configuration, mathematical model, Fredholm integral equation of the first kind
Mots-clés : solid solution
@article{VSGTU_2024_28_1_a8,
     author = {O. M. Nemtsova and G. N. Konygin and I. S. Veselkov},
     title = {Extended mathematical model of the inverse problem of nuclear gamma-resonance. {Reliability} and informative of application},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {152--170},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a8/}
}
TY  - JOUR
AU  - O. M. Nemtsova
AU  - G. N. Konygin
AU  - I. S. Veselkov
TI  - Extended mathematical model of the inverse problem of nuclear gamma-resonance. Reliability and informative of application
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2024
SP  - 152
EP  - 170
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a8/
LA  - ru
ID  - VSGTU_2024_28_1_a8
ER  - 
%0 Journal Article
%A O. M. Nemtsova
%A G. N. Konygin
%A I. S. Veselkov
%T Extended mathematical model of the inverse problem of nuclear gamma-resonance. Reliability and informative of application
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2024
%P 152-170
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a8/
%G ru
%F VSGTU_2024_28_1_a8
O. M. Nemtsova; G. N. Konygin; I. S. Veselkov. Extended mathematical model of the inverse problem of nuclear gamma-resonance. Reliability and informative of application. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 152-170. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a8/

[1] Hadef F., Otmani A., Djekoun A., Grenèche J. M., “Investigation of mechanosynthesized Fe$_{50}$Ni$_{40}$Al$_{10}$ powders”, J. Magn. Magn. Mater., 343 (2013), 214–220 | DOI

[2] Hadef F., Otmani A., Djekoun A., Grenèche J. M., “Mössbauer effect study of fine atomic structure of Fe$_{50}$Al$_{40}$Ni$_{10}$ powders”, Superlattices Microst., 51:6 (2012), 952–958 | DOI

[3] Lomaeva S. F., Maratkanova A. H., Nemtsova O. M., et al., “Formation of the structural-phase composition and magnetic properties of nanocomposites Fe(Fe$_{3}$C, Fe$_{5}$SiC)–SiO$_2 $ in the process of mechanosynthesis”, Phys. Met. Metallogr., 109:5 (2010), 534–546 | DOI

[4] Lomaeva S. F., Nemtsova O. M., Elsukov E. P., et al., “Formation of metastable phases during mechanical activation of Fe–Si alloy in liquid organic media”, Chemistry for Sustainable Development, 13:2 (2005), 275–286

[5] Arzhnikov A. K., Dobysheva L. V., Konygin G. N., Elsukov E. P., “Magnetic moments and hyperfine magnetic fields in ordered and disordered quasi-binary Fe$_{75}$(Si$_{1-x}$Ge$_{x}$)$_{25}$ alloys”, Phys. Solid State, 47:11 (2005), 2063–2071 | DOI

[6] Spinel' V. S., Resonans gamma-luchey v kristallakh [Resonance of Gamma-rays in Crystals], Nauka, Moscow, 1969, 407 pp. (In Russian)

[7] Litvinov V. S., Karakishev S. D., Ovchinnikov V. V., Iadernaia gamma-rezonansnaia spektroskopiia splavov [Nuclear Gamma-Resonance Spectroscopy of Alloys], Metallurgia, Moscow, 1982, 144 pp. (In Russian)

[8] Rusakov V. S., Messbauerovskaia spektroskopiia lokal'no neodnorodnykh sistem [Mössbauer Spectroscopy of Locally Inhomogeneous Systems], Almaty, 2000, 431 pp. (In Russian)

[9] Yelsukov E. P., Ul'yanov A. L., Porsev V. E., et al., “Peculiarities of mechanical alloying of high-concentration Fe–Cr alloys”, Phys. Met. Metallogr., 119:2 (2018), 153–160 | DOI | DOI

[10] Gladkov V. P., Kascheev V. A., Kouskov A. X., Petrov V. I., “Mathematical method of allowance for distortions of the shape of the registered Mössbauer spectrum lines”, J. Appl. Spectrosc., 71:5 (2004), 731–735 | DOI

[11] Rusakov V. S., Pokatilov V. S., Gubaidulina T. V., Matsnev M. E., “Hyperfine Magnetic Fields at the Nuclei of $^{57}$Fe in the Intermetallic System Zr$_{1-x}$Sc$_{x}$Fe$_2 $ intermetallic system”, Phys. Met. Metallogr., 120:4 (2019), 339–344 | DOI | DOI

[12] Boukherroub N., Guittoum A., Laggoun A., et al., “Microstructure and magnetic properties of nanostructured (Fe$_{0.8}$Al$_{0.2})_{100-x}$Si$_{x}$ alloy produced by mechanical alloying”, J. Magn. Magn. Mater., 385 (2015), 151–159 | DOI

[13] Borrego J. M., Conde A., Peña-Rodríguez V. A., Grenèche J. M., “A fitting procedure to describe Mössbauer spectra of FINEMET-type nanocrystalline alloys”, Hyperfine Interact., 131 (2000), 67–82 | DOI

[14] Djekoun A., Otmani A., Bouzabata B., et al., “Synthesis and characterization of high-energy ball milled nanostructured Fe$_{50}$Ni$_{50}$”, Catal. Today, 113:3–4 (2006), 235–239 | DOI

[15] Gladkov V. P., Martynenko S. S., Petrov V. I., “Refinement of the shape of the detected line in mössbauer spectra”, J. Appl. Spectrosc., 78:2 (2011), 296–300 | DOI

[16] Chuev M. A., “An efficient method of analysis of the hyperfine structure of gamma-resonance spectra using the Voigt profile”, Dokl. Phys., 56:6 (2011), 318–322 | DOI

[17] Ida T., Ando M., Toraya H., “Extended pseudo-Voigt function for approximating the Voigt profile”, J. Appl. Cryst., 33:6 (2000), 1311–1316 | DOI

[18] Baidakova N. V., Chernykh N. I., Koloskov V. M., Subbotin Y. N., “A new algorithm for analysis of experimental Mössbauer spectra”, Ural Math. J., 3:2 (2017), 33–39 | DOI

[19] Li Z., Ping J. Y., Jin M. Z., Liu M. L., “Distribution of Fe$^{2+}$ and Fe$^{3+}$ and next-nearest neighbour effects in natural chromites: Comparison between results of QSD and Lorentzian doublet analysis”, Phys. Chem. Miner., 29:7 (2002), 485–494 | DOI

[20] Satuła D., Szymański K., Dobrzyńsk L., “Maximum entropy method in Mössbauer spectroscopy — A problem of magnetic texture doublet analysis”, Acta Phys. Pol. A, 119:1 (2011), 78–80 | DOI

[21] Konygin G. N., Nemtsova O. M., Porsev V. E. \pape Mössbauer spectra of solid solutions processed using the Voigt function, J. Appl. Spectrosc., 86:3 (2019), 409–415 | DOI

[22] Konygin G. N., Nemtsova O. M., “Use of a double convolution of Lorentz and Gaussian functions for processing Mössbauer spectra of supersaturated disordered solid solutions”, J. Appl. Spectrosc., 88:6 (2021), 1176–1182 | DOI | DOI

[23] Sizikov V. S., Krivykh A. V., “Reconstruction of continuous spectra by the regularization method using model spectra”, Opt. Spectrosc., 117:6 (2014), 1040–1048 | DOI | DOI

[24] Kiselev E. A., “Systems of integer shifts generated by convolution of Gauss and Lorentz functions”, Proc. Voronezh State Univ., Ser. Phys. Math., 4 (2016), 43–50 (In Russian)

[25] Vasin V. V., “Irregular nonlinear operator equations: Tikhonov’s regularization and iterative approximation”, J. Inverse Ill-Posed Probl., 21:1 (2013), 109–123 | DOI

[26] Morozov V. A., “On restoration of noisy signals by a regularization method”, Numerical Methods and Programming, 13:1 (2012), 247–252 (In Russian)

[27] Nemtsova O. M., Ageev A. L., Voronina E. V., “The estimation of the error of the hyperfine interaction parameter distribution from Mössbauer spectra”, Nucl. Instr. Meth. Phys. Res., Sect. B., 187:1 (2002), 132–136 | DOI

[28] Xiong X., Xue X., “A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation”, Appl. Math. Comput., 349 (2019), 292–303 | DOI

[29] Voronina E. V., Ageev A. L., Nemtsova O. M., Yelsukov E. P., “Algorithm of parameters correction for solving the inverse problem of Mössbauer spectroscopy”, Czechoslov. J. Phys., 47:5 (1997), 547–552 | DOI

[30] Matsnev M. E., Rusakov V. S., “SpectrRelax: An application for Mössbauer spectra modeling and fitting”, AIP Conf. Proc., 1489:1 (2012), 178–185 | DOI

[31] Nemtsova O. M., Konygin G. N., Porsev V. E., “Separation of overlapping spectral lines using the Tikhonov regularization method”, J. Appl. Spectrosc., 88:2 (2021), 373–381 | DOI

[32] Edwards T. H., Stoll S., “Optimal Tikhonov regularization for DEER spectroscopy”, J. Magn. Reson., 288 (2018), 58–68 | DOI

[33] Sizikov V. S., Stepanov A. V., “Method of training examples in solving inverse ill-posed problems of spectroscopy”, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 15:6 (2015), 1147–1154 | DOI

[34] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei [Ill-Posed Problems with A Priori Information], Nauka, Ekaterinburg, 1993, 264 pp. (In Russian)

[35] Ageev A. L., Antonova T. V., Voronina E. V., “Methods of parameter adjustment for the solution of integral equations of the first kind”, Mat. Model., 8:12 (1996), 110–124 | MR | Zbl

[36] Nemtsova O. M. , Konygin G. N., Program for processing Mössbauer spectra using the Tikhonov regularization method with correction of hyperfine interaction parameters, Certificate of State Registration of Computer Program no. 2020667880, 2020 (In Russian)

[37] Yagola A. G., “Ill-posed problems with apriori information”, Sib. Electron. Mat. Izv., 7 (2010), C.343–C.361

[38] Tikhonov A. N., Arsenin V. Ya., Metody resheniia nekorrektnykh zadach [Methods for Solving Ill-Posed Problems], Nauka, Moscow, 1970, 288 pp. (In Russian)

[39] Yazovskikh K. A., Lomaeva S. F., Shakov A. A., et al., “Influence of organic medium of ball milling on structural-phase composition and corrosion resistance of Fe–Si alloys”, Chem. Phys. Mesoscop., 20:2 (2018), 284–296 (In Russian)

[40] Ivoylov N. G., Messbauerovskaia spektroskopiia [Mössbauer Spectroscopy], Kazan', 2003, 93 pp. (In Russian)

[41] AlOmar A. S., “Line width at half maximum of the Voigt profile in terms of Gaussian and Lorentzian widths: Normalization, asymptotic expansion, and chebyshev approximation”, Optik, 203 (2020), 163919 | DOI

[42] Yazovskikh K. A., Lomayeva S. F., Shakov A. A., et al., “Surface modification of sendust powders prepared by ball milling”, Mater. Today Proc., 12 (2019), 172–176 | DOI