Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_1_a6, author = {A. I. Zhdanov and Yu. V. Sidorov}, title = {Implicit iterative scheme based on the pseudo-inversion algorithm and its application}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {117--129}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a6/} }
TY - JOUR AU - A. I. Zhdanov AU - Yu. V. Sidorov TI - Implicit iterative scheme based on the pseudo-inversion algorithm and its application JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 117 EP - 129 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a6/ LA - ru ID - VSGTU_2024_28_1_a6 ER -
%0 Journal Article %A A. I. Zhdanov %A Yu. V. Sidorov %T Implicit iterative scheme based on the pseudo-inversion algorithm and its application %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 117-129 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a6/ %G ru %F VSGTU_2024_28_1_a6
A. I. Zhdanov; Yu. V. Sidorov. Implicit iterative scheme based on the pseudo-inversion algorithm and its application. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 117-129. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a6/
[1] Sun L., Wei Y., Zhou J., “On an iterative method for solving the least squares problem of rank-deficient systems”, Int. J. Comp. Math., 92:3 (2015), 532–541 | DOI
[2] Zhdanov A. I., “Implicit iterative schemes based on singular decomposition and regularizing algorithms”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 549–556 | DOI
[3] Zhdanov A. I., “Implicit iterative schemes based on augmented linear systems”, Dokl. Math., 105:2 (2022), 131–134 | DOI | DOI
[4] Ben–Israel A., Greville T. N. E., Generalized Inverses: Theory and Applications, Springer, New York, 2003, xv+420 pp. | DOI
[5] Riley J. D., “Solving systems of linear equations with a positive definite, symmetric, but possibly ill-conditioned matrix”, Math. Comp., 9 (1955), 96–101 | DOI
[6] Esmaeili H., Erfanifar R., Rashidi M., “An efficient Schulz-type method to compute the Moore–Penrose inverse”, Int. J. Industr. Math., 10:2 (2018), 221–228
[7] Toutounian F., Soleymani F., “An iterative method for computing the approximate inverse of a square matrix and the Moore–Penrose inverse of a non-square matrix”, Appl. Math. Comp., 224 (2013), 671–680 | DOI
[8] Golub G. H. van Loan C. F., Matrix Computations, Johns Hopkins Univ., Baltimore, 2013, xxiv+756 pp.
[9] Schulz G., “Iterative Berechung der reziproken Matrix”, ZAMM, 13:1 (1933), 57–59 | DOI
[10] Hansen P. C., “REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems”, Numer. Algor., 6 (1994), 1–53 | DOI
[11] Pillonetto G., Chen T., Chiuso A., et al., Regularized System Identification: Learning Dynamic Models from Data, Springer, Cham, 2022, xxiv+377 pp. | DOI
[12] Wang E., Zhang Q., Shen B. et al., “Intel math kernel library”, High-Performance Computing on the Intel® Xeon PhiTM, Springer, Cham, 2014, 167–188 | DOI
[13] Fatica M., “CUDA toolkit and libraries”, 2008 IEEE Hot Chips 20 Symposium (24–26 August 2008), Stanford, CA, USA, 2008, 1–22 | DOI
[14] Zare H., Hajarian M., “Determination of regularization parameter via solving a multi-objective optimization problem”, Appl. Num. Math., 156 (2020), 542–554 | DOI