Implicit iterative scheme based on the pseudo-inversion algorithm and its application
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 117-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new version of the implicit iterative scheme is proposed for the implementation of which only matrix-vector computational procedures are required. This makes the proposed computational scheme potentially highly efficient for solving a wide class of high-dimensional problems on modern high-performance computing platforms, such as Nvidia Cuda. It is shown that the proposed algorithms can be used to solve ill-conditioned linear systems and least squares problems, as well as to construct iterative regularization algorithms. The results of computational experiments are presented, confirming the effectiveness of the proposed computational algorithms.
Keywords: implicit iterative scheme, simple iteration method, ill-conditioned problems, Ben–Israel iterative pseudo-inversion, iterative regularization, matrix-vector operations
@article{VSGTU_2024_28_1_a6,
     author = {A. I. Zhdanov and Yu. V. Sidorov},
     title = {Implicit iterative scheme based on the pseudo-inversion algorithm and its application},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {117--129},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a6/}
}
TY  - JOUR
AU  - A. I. Zhdanov
AU  - Yu. V. Sidorov
TI  - Implicit iterative scheme based on the pseudo-inversion algorithm and its application
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2024
SP  - 117
EP  - 129
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a6/
LA  - ru
ID  - VSGTU_2024_28_1_a6
ER  - 
%0 Journal Article
%A A. I. Zhdanov
%A Yu. V. Sidorov
%T Implicit iterative scheme based on the pseudo-inversion algorithm and its application
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2024
%P 117-129
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a6/
%G ru
%F VSGTU_2024_28_1_a6
A. I. Zhdanov; Yu. V. Sidorov. Implicit iterative scheme based on the pseudo-inversion algorithm and its application. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 117-129. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a6/

[1] Sun L., Wei Y., Zhou J., “On an iterative method for solving the least squares problem of rank-deficient systems”, Int. J. Comp. Math., 92:3 (2015), 532–541 | DOI

[2] Zhdanov A. I., “Implicit iterative schemes based on singular decomposition and regularizing algorithms”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 549–556 | DOI

[3] Zhdanov A. I., “Implicit iterative schemes based on augmented linear systems”, Dokl. Math., 105:2 (2022), 131–134 | DOI | DOI

[4] Ben–Israel A., Greville T. N. E., Generalized Inverses: Theory and Applications, Springer, New York, 2003, xv+420 pp. | DOI

[5] Riley J. D., “Solving systems of linear equations with a positive definite, symmetric, but possibly ill-conditioned matrix”, Math. Comp., 9 (1955), 96–101 | DOI

[6] Esmaeili H., Erfanifar R., Rashidi M., “An efficient Schulz-type method to compute the Moore–Penrose inverse”, Int. J. Industr. Math., 10:2 (2018), 221–228

[7] Toutounian F., Soleymani F., “An iterative method for computing the approximate inverse of a square matrix and the Moore–Penrose inverse of a non-square matrix”, Appl. Math. Comp., 224 (2013), 671–680 | DOI

[8] Golub G. H. van Loan C. F., Matrix Computations, Johns Hopkins Univ., Baltimore, 2013, xxiv+756 pp.

[9] Schulz G., “Iterative Berechung der reziproken Matrix”, ZAMM, 13:1 (1933), 57–59 | DOI

[10] Hansen P. C., “REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems”, Numer. Algor., 6 (1994), 1–53 | DOI

[11] Pillonetto G., Chen T., Chiuso A., et al., Regularized System Identification: Learning Dynamic Models from Data, Springer, Cham, 2022, xxiv+377 pp. | DOI

[12] Wang E., Zhang Q., Shen B. et al., “Intel math kernel library”, High-Performance Computing on the Intel® Xeon PhiTM, Springer, Cham, 2014, 167–188 | DOI

[13] Fatica M., “CUDA toolkit and libraries”, 2008 IEEE Hot Chips 20 Symposium (24–26 August 2008), Stanford, CA, USA, 2008, 1–22 | DOI

[14] Zare H., Hajarian M., “Determination of regularization parameter via solving a multi-objective optimization problem”, Appl. Num. Math., 156 (2020), 542–554 | DOI