Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_1_a5, author = {T. V. Yakovleva and V. A. Krys'ko}, title = {Mathematical models of nonlinear dynamics of functionally graded nano/micro/macro-scale porous closed cylindrical {Kirchhoff--Love} shells}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {96--116}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a5/} }
TY - JOUR AU - T. V. Yakovleva AU - V. A. Krys'ko TI - Mathematical models of nonlinear dynamics of functionally graded nano/micro/macro-scale porous closed cylindrical Kirchhoff--Love shells JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 96 EP - 116 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a5/ LA - ru ID - VSGTU_2024_28_1_a5 ER -
%0 Journal Article %A T. V. Yakovleva %A V. A. Krys'ko %T Mathematical models of nonlinear dynamics of functionally graded nano/micro/macro-scale porous closed cylindrical Kirchhoff--Love shells %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 96-116 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a5/ %G ru %F VSGTU_2024_28_1_a5
T. V. Yakovleva; V. A. Krys'ko. Mathematical models of nonlinear dynamics of functionally graded nano/micro/macro-scale porous closed cylindrical Kirchhoff--Love shells. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 96-116. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a5/
[1] Krysko V. A., Awrejcewicz J., Zhigalov M. V., et al., “On the mathematical models of the Timoshenko-type multi-layer flexible orthotropic shells”, Nonlinear Dyn., 92:4 (2018), 2093–2118 | DOI
[2] Awrejcewicz J., Krysko V. A., Zhigalov M. V., Krysko A. V., “Contact interaction of two rectangular plates made from different materials with an account of physical nonlinearity”, Nonlinear Dyn., 91:3 (2018), 1191–1211 | DOI
[3] Awrejcewicz J., Krysko V. A., Pavlov S. P., et al., “Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory”, Nonlinear Dyn., 99:2 (2020), 919–943 | DOI
[4] Awrejcewicz J., Krysko A., Erofeev N., et al., “Quantifying chaos by various computational methods. Part 1: Simple systems”, Entropy, 20:3 (2018), 175 | DOI
[5] Amabili M., Balasubramanian P., Ferrari G., “Travelling wave and non-stationary response in nonlinear vibrations of water-filled circular cylindrical shells: Experiments and simulations”, J. Sound Vib., 381 (2016), 220–245 | DOI
[6] Amabili M., Nonlinear Mechanics of Shells and Plates: Composite, Soft and Biological Materials, Cambridge Univ. Press, New York, 2018, xvi+568 pp. | DOI
[7] Birger I. A., “Some general methods of solution for problems in the theory of plasticity”, Prikl. Mat. Mekh., 15:6 (1951), 765–770 (In Russian)
[8] Vorovich I. I, Krasovskii Yu. P., “On a method of elastic solutions”, Dokl. Akad. Nauk SSSR, 126:4 (1959), 740–743 (In Russian)
[9] Volmir A. S., Nelineinaia dinamika plastin i obolochek [The Nonlinear Dynamics of Plates and Shells], Nauka, Moscow, 1972, 432 pp. (In Russian)
[10] Hamilton W. R., “On a general method in dynamics”, Philos. Trans. R. Soc. Lond., 1834, part II, 247–308
[11] Washizu K., Variational Methods in Elasiticity and Plasticity, International Series of Monographs in Aeronautics and Astronautics, 9, Pergamon Press, Oxford, 1968, x+349 pp. | Zbl
[12] Fichera G., “Boundary value problems of elasticity with unilateral constraints”, C. Truesdell (eds) Linear Theories of Elasticity and Thermoelasticity, Springer, Berlin, Heidelberg, 1973, 391–424 | DOI
[13] Kupradze V. D., Gegelia T. G., Basheleishvili M. O., Burchuladze T. V., Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland Series in applied Mathematics and Mechanics, 25, North-Holland Publ., Amsterdam, New York, Oxford, 1979, xix+929 pp. | Zbl
[14] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969 (In French)
[15] Vorovich I. I., Aleksandrov V. M., Babenko V. A., Neklassicheskie smeshannye zadachi teorii uprugosti [Nonclassical Mixed Problems of Elasticity], Nauka, Moscow, 1974, 455 pp. (In Russian)
[16] Morozov N. F., Izbrannye dvumernye zadachi teorii uprugosti [Selected Two-Dimensional Problems of the Elasticity Theory], Leningrad State Univ., Leningrad, 1978, 182 pp. (In Russian)
[17] Kornishin M. S., Isanbaeva F. S., Gibkie plastiny i paneli [Flexible Plates and Panels], Nauka, Moscow, 1968, 258 pp. (In Russian)
[18] Piechocki W., “On the existence of solutions for heated non-linear orthotropic inhomogeneous shallow shells”, Bull. Acad. Pol. Sci., Sér. Sci. Tech., 17 (1969), 597–601 | Zbl
[19] Sobolev S. L., Applications of functional analysis in mathematical physics, Translations of Mathematical Monographs, 7, American Mathematical Society, Providence, R.I., 1963, vii+239 pp. | Zbl
[20] Vishik M. I., “Quasi-linear strongly elliptic systems of differential equations in divergence form”, Trans. Mosc. Math. Soc., 12 (1963), 140–208 | MR | Zbl
[21] Dubinskii Yu. A., “Quasilinear elliptic and parabolic equations of arbitrary order”, Russian Math. Surveys, 23:1 (1968), 45–91 | DOI | MR | Zbl
[22] Lions J.-L, Magenes E., Non-homogeneous boundary value problems and applications, v. I, Springer Verlag, New York, 1972, xvi+357 pp. | Zbl
[23] Cabrera-Covarrubias F. G., Gómez-Soberón J. M., Almaral-Sánchez J. L., et al., “An experimental study of mortars with recycled ceramic aggregates: Deduction and prediction of the stress-strain”, Materials, 9:12 (2016), 1029 | DOI
[24] Yang F., Chong A. C. M., Lam D. C. C., Tong P., “Couple stress based strain gradient theory for elasticity”, Int. J. Solids Struct., 39:10 (2002), 2731–2743 | DOI
[25] Yakovleva T. V., Awrejcewicz J., Kruzhilin V. S., Krysko V. A., “On the chaotic and hyper-chaotic dynamics of nanobeams with low shear stiffness”, Chaos, 31:2 (2021), 023107 | DOI
[26] Yakovleva T. V., Awrejcewicz J., Krysko A. V., et al., “Quantifying chaotic dynamics of nanobeams with clearance”, Int. J. Non-Linear Mech., 144 (2022), 104094 | DOI
[27] Farokhi H., Ghayesh M. H., “Nonlinear resonant response of imperfect extensible Timoshenko microbeams”, Int. J. Mech. Mater. Des., 13:1 (2017), 43–55 | DOI
[28] Ke L. L., Wang Y. S., Yang J., Kitipornchai S., “Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory”, J. Sound Vib., 331:1 (2012), 94–106 | DOI
[29] Ma H. M., Gao X.-L., Reddy J. N., “A non-classical Mindlin plate model based on a modified couple stress theory”, Acta Mech., 220:1–4 (2011), 217–235 | DOI | Zbl
[30] Gulick D., Encounters with Chaos, McGraw-Hill Education, New York, 1992
[31] Rosenstein M. T., Collins J. J., De Luca C. J., “A practical method for calculating largest Lyapunov exponents from small data sets”, Phys. D: Nonl. Phen., 65:1–2 (1993), 117–134 | DOI
[32] Wolf A., Swift J. B., Swinney H. L., Vastano J A., “Determining Lyapunov exponents from a time series”, Phys. D: Nonl. Phen., 16:3 (1985), 285–317 | DOI
[33] Kantz H., “A robust method to estimate the maximal Lyapunov exponent of a time series”, Phys. Lett. A, 185:1 (1994), 77–87 | DOI
[34] Sano M., Sawada Y., “Measurement of the Lyapunov spectrum from a chaotic time series”, Phys. Rev. Lett., 55:10 (1985), 1082 | DOI
[35] Hou F., Wu S., Moradi Z., Shafiei N., “The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation”, Engineering with Computers, 38, Suppl. 4 (2022), 3217–3235 | DOI