Numerical method for structural and parametric identification of a mathematical model of incomplete inverse deformation of creep strain
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 73-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new numerical method for parametric and structural identification of the physically nonlinear theory of reversibility of creep strain, valid within the first and second stages, has been developed. A series of stationary creep curves is used as basic experimental information. The problem is reduced to nonlinear regression analysis of determining estimates of random parameters based on time series of a sequence of observations of creep deformation at various constant stresses using difference equations. The obtained relationships between the coefficients of the difference equation and the parameters of nonlinear regression allow us to reduce the problem of estimating the coefficients of a linear-parametric discrete model. Corresponding iterative algorithms for refining parameter estimates with any given accuracy have been developed. Parametric and structural identification of the theory of incomplete reversibility of creep deformation has been carried out for steel EI736 (500 $^{\circ}$C) and alloys EI437A (700 $^{\circ}$C), VZh98 (900 $^{\circ}$C), EP693 (700 $^{\circ}$C). Numerical values of model parameter estimates for these alloys are given. The adequacy of the constructed mathematical models was checked, and the relation between the calculated and experimental data was observed. Experimental data for all materials considered belong to the corresponding calculated confidence intervals for creep deformation, which indicates the reliability of the obtained estimates of the model parameters.
Keywords: creep, nonlinear regression model, difference equations, root-mean-square parameter estimates
Mots-clés : identification
@article{VSGTU_2024_28_1_a4,
     author = {V. P. Radchenko and V. E. Zoteev and E. A. Afanaseva},
     title = {Numerical method for structural and parametric identification of a mathematical model of incomplete inverse deformation of creep strain},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {73--95},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a4/}
}
TY  - JOUR
AU  - V. P. Radchenko
AU  - V. E. Zoteev
AU  - E. A. Afanaseva
TI  - Numerical method for structural and parametric identification of a mathematical model of incomplete inverse deformation of creep strain
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2024
SP  - 73
EP  - 95
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a4/
LA  - ru
ID  - VSGTU_2024_28_1_a4
ER  - 
%0 Journal Article
%A V. P. Radchenko
%A V. E. Zoteev
%A E. A. Afanaseva
%T Numerical method for structural and parametric identification of a mathematical model of incomplete inverse deformation of creep strain
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2024
%P 73-95
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a4/
%G ru
%F VSGTU_2024_28_1_a4
V. P. Radchenko; V. E. Zoteev; E. A. Afanaseva. Numerical method for structural and parametric identification of a mathematical model of incomplete inverse deformation of creep strain. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 73-95. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a4/

[1] Rabotnov Yu. N., Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics, 7, North-Holland Publ., Amsterdam, London, 1969, xiv+822 pp. | Zbl

[2] Bolotin V. V., Prognozirovanie resursov mashin i konstruktsii [Forecasting Resource Machines and Structures], Mashinostroenie, Moscow, 1984, 312 pp. (In Russian)

[3] Lomakin V. A., Statisticheskie zadachi mekhaniki tverdykh deformiruemykh tel [Statistical Problems of the Mechanics of Deformable Solids], Nauka, Moscow, 1970, 139 pp. (In Russian)

[4] Radchenko V. P., Dudkin S. A., Timofeev M. I., “Experimental study and analysis of the inelastic micro- and macro-inhomogeneity fields of AD-1 alloy”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2002, no. 16, 111–117 (In Russian) | DOI

[5] Samarin Yu. P., “Use of stochastic equations in the theory of creep of materials”, Izv. AN. SSSR. MTT, 1974, no. 1, 88–94 (In Russian)

[6] Samarin Yu. P., “Stochastic mechanical properties and reliability of structures with rheological properties”, Polzuchest' i dlitel'naia prochnost' konstruktsii [Creep and Long-Term Strength of Structures], Kuybyshev Polytech. Inst., Kuybyshev, 1986, 8–17 (In Russian)

[7] Radchenko V. P., Saushkin M. N., Goludin E. P., “Stochastic model of nonisothermal creep and long-term strength of materials”, J. Appl. Mech. Tech. Phys., 53:2 (2012), 292–298 | DOI

[8] Radchenko V. P., Simonov A. V., Dudkin S. A., “Stochastic version of the one-dimensional theory of creep and long-term strength”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2001, no. 12, 73–84 (In Russian) | DOI

[9] Radchenko V. P., Goludin E. P., “Phenomenological stochastic isothermal creep model for an polivinylchloride elastron”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 1, 45–52 (In Russian) | DOI

[10] Dolzhkovoi A. A., Popov N. N., Radchenko V. P., “Solution of the stochastic boundary-value problem of steady-state creep for a thick-walled tube using the small-parameter method”, J. Appl. Mech. Tech. Phys., 47:1 (2006), 134–142 | DOI

[11] Popov N. N., Radchenko V. P., “Analytical solution of the stochastic steady-state creep boundary value problem for a thick-walled tube”, J. Appl. Math. Mech., 76:6 (2012), 738–744 | DOI

[12] Popov N. N., Samarin Yu. P., “Stress fields close to the boundary of a stochastically inhomogeneous half-plane during creep”, J. Appl. Mech. Tech. Phys., 29:1 (1988), 149–154 | DOI

[13] Popov N. N., Samarin Yu. P., “Spatial problem of stationary creep of a stochastically inhomogeneous medium”, J. Appl. Mech. Tech. Phys., 26:2 (1985), 296–301 | DOI

[14] Popov N. N., “Nonlinear stochastic creep problem of a thick-walled spherical shell”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2000, no. 9, 186–189 (In Russian) | DOI

[15] Popov N. N., “Creep of a stochastic heterogeneous plate with a small circular hole”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 2, 126–132 (In Russian) | DOI

[16] Lokoshchenko A. M., Creep and Long-Term Strength of Metals, CRC Press, Boca, Raton, 2016, xviii+545 pp.

[17] Nikitenko A. F., Polzuchest' i dlitel'naia prochnost' metallicheskikh materialov [Creep and Long-Term Strength of Metallic Materials], Novosibirsk State Univ. of Archit. and Civil Engin., Novosibirsk, 1997, 278 pp. (In Russian)

[18] Volkov I. A., Korotkikh Yu. G., Uravneniia sostoianiia viazkouprugoplasticheskikh sred s povrezhdeniiami [Equations of State for Viscoelastic-Plastic Media with Damage], Fizmatlit, Moscow, 2008, 424 pp. (In Russian)

[19] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological Deformation and Fracture of Materials and Structural Elements], Mashinostroenie-1, Moscow, 2004, 265 pp. (In Russian)

[20] Volkov I. A., Igumnov L. A., Smetanin I. V., et al., Polzuchest' i dlitel'naia prochnost' materialov i konstruktsii [Creep and Long-Term Strength of Materials and Structures], Nizhny Novgorod Univ., Nizhny Novgorod, 2021, 155 pp. (In Russian)

[21] Volkov I. A., Igumnov L. A., Shishulin D. N., Otsenka resursnykh kharakteristik materialov i konstruktsii pri ustalosti i polzuchesti [Assessment of Resource Characteristics of Materials and Structures during Fatigue and Creep], Nizhny Novgorod Univ., Nizhny Novgorod, 2020, 106 pp. (In Russian)

[22] Samarin Yu. P., Uravneniia sostoianiia materialov so slozhnymi reologicheskimi svoistvami [Equations of State of Materials with Complex Rheological Properties], Kuybyshev State Univ., Kuybyshev, 1979, 84 pp. (In Russian)

[23] Theoretical and Theoretical-Empirical Methods of Determining the Load-Carrying Capacity and Life of Machine Elements and Structures. Theoretical-Experimental Method of Determining Creep and Rupture-Strength Parameters for Nonsteady Uniaxial Loading (1st ed.), Gosstandart, Moscow, 1982 (In Russian)

[24] Samarin Yu. P., “Derivation of exponential approximations for creep curves by the method of successive isolation of exponential terms”, Strength Mater., 6:9 (1974), 1062–1066 | DOI

[25] Mukhina L. G., “Calculation of creep characteristics from experimental data using the nonparametric alignment method”, Teoretiko-eksperimental'nyi metod issledovaniia v konstruktsiiakh [Theoretical and Experimental Method of Research in Construction], KuAI, Kuybyshev, 1984, 86–94 (In Russian)

[26] Draper N. R., Smith H., Applied Regression Analysis, Wiley Series in Probability and Statistics, New York, 1998, xix+716 pp. | DOI

[27] Demidenko E. Z., Lineinaia i nelineinaia regressii [Linear and Nonlinear Regressions], Finansy i statistika, Moscow, 1981, 302 pp. (In Russian)

[28] Zoteev V. E., “Parametrical identification of creep's curve on the basis of stochastic difference equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 1, 90–95 (In Russian) | DOI

[29] Zoteev V. E., Makarov R. Yu., “A numerical method for determining the parameters of the first stage of creep deformation”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2017, no. 4, 40–48 (In Russian) | DOI

[30] Zoteev V. E., “A numerical method of nonlinear estimation based on difference equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:4 (2018), 669–701 (In Russian) | DOI

[31] Bulygin I. P., Vlasova P. T., Gorbodey A. T. et al., Atlas diagramm rastiazheniia pri vysokikh temperaturakh, krivykh polzuchesti i dlitel'noi prochnosti stalei i splavov dlia dvigatelei [Atlas of Tensile Diagrams at High Temperatures, Curves of Creep and Long-Term Strength of Steels for Engines], Oborongiz, Moscow, 1957, 174 pp. (In Russian)