Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_1_a4, author = {V. P. Radchenko and V. E. Zoteev and E. A. Afanaseva}, title = {Numerical method for structural and parametric identification of a mathematical model of incomplete inverse deformation of creep strain}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {73--95}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a4/} }
TY - JOUR AU - V. P. Radchenko AU - V. E. Zoteev AU - E. A. Afanaseva TI - Numerical method for structural and parametric identification of a mathematical model of incomplete inverse deformation of creep strain JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 73 EP - 95 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a4/ LA - ru ID - VSGTU_2024_28_1_a4 ER -
%0 Journal Article %A V. P. Radchenko %A V. E. Zoteev %A E. A. Afanaseva %T Numerical method for structural and parametric identification of a mathematical model of incomplete inverse deformation of creep strain %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 73-95 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a4/ %G ru %F VSGTU_2024_28_1_a4
V. P. Radchenko; V. E. Zoteev; E. A. Afanaseva. Numerical method for structural and parametric identification of a mathematical model of incomplete inverse deformation of creep strain. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 73-95. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a4/
[1] Rabotnov Yu. N., Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics, 7, North-Holland Publ., Amsterdam, London, 1969, xiv+822 pp. | Zbl
[2] Bolotin V. V., Prognozirovanie resursov mashin i konstruktsii [Forecasting Resource Machines and Structures], Mashinostroenie, Moscow, 1984, 312 pp. (In Russian)
[3] Lomakin V. A., Statisticheskie zadachi mekhaniki tverdykh deformiruemykh tel [Statistical Problems of the Mechanics of Deformable Solids], Nauka, Moscow, 1970, 139 pp. (In Russian)
[4] Radchenko V. P., Dudkin S. A., Timofeev M. I., “Experimental study and analysis of the inelastic micro- and macro-inhomogeneity fields of AD-1 alloy”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2002, no. 16, 111–117 (In Russian) | DOI
[5] Samarin Yu. P., “Use of stochastic equations in the theory of creep of materials”, Izv. AN. SSSR. MTT, 1974, no. 1, 88–94 (In Russian)
[6] Samarin Yu. P., “Stochastic mechanical properties and reliability of structures with rheological properties”, Polzuchest' i dlitel'naia prochnost' konstruktsii [Creep and Long-Term Strength of Structures], Kuybyshev Polytech. Inst., Kuybyshev, 1986, 8–17 (In Russian)
[7] Radchenko V. P., Saushkin M. N., Goludin E. P., “Stochastic model of nonisothermal creep and long-term strength of materials”, J. Appl. Mech. Tech. Phys., 53:2 (2012), 292–298 | DOI
[8] Radchenko V. P., Simonov A. V., Dudkin S. A., “Stochastic version of the one-dimensional theory of creep and long-term strength”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2001, no. 12, 73–84 (In Russian) | DOI
[9] Radchenko V. P., Goludin E. P., “Phenomenological stochastic isothermal creep model for an polivinylchloride elastron”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 1, 45–52 (In Russian) | DOI
[10] Dolzhkovoi A. A., Popov N. N., Radchenko V. P., “Solution of the stochastic boundary-value problem of steady-state creep for a thick-walled tube using the small-parameter method”, J. Appl. Mech. Tech. Phys., 47:1 (2006), 134–142 | DOI
[11] Popov N. N., Radchenko V. P., “Analytical solution of the stochastic steady-state creep boundary value problem for a thick-walled tube”, J. Appl. Math. Mech., 76:6 (2012), 738–744 | DOI
[12] Popov N. N., Samarin Yu. P., “Stress fields close to the boundary of a stochastically inhomogeneous half-plane during creep”, J. Appl. Mech. Tech. Phys., 29:1 (1988), 149–154 | DOI
[13] Popov N. N., Samarin Yu. P., “Spatial problem of stationary creep of a stochastically inhomogeneous medium”, J. Appl. Mech. Tech. Phys., 26:2 (1985), 296–301 | DOI
[14] Popov N. N., “Nonlinear stochastic creep problem of a thick-walled spherical shell”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2000, no. 9, 186–189 (In Russian) | DOI
[15] Popov N. N., “Creep of a stochastic heterogeneous plate with a small circular hole”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 2, 126–132 (In Russian) | DOI
[16] Lokoshchenko A. M., Creep and Long-Term Strength of Metals, CRC Press, Boca, Raton, 2016, xviii+545 pp.
[17] Nikitenko A. F., Polzuchest' i dlitel'naia prochnost' metallicheskikh materialov [Creep and Long-Term Strength of Metallic Materials], Novosibirsk State Univ. of Archit. and Civil Engin., Novosibirsk, 1997, 278 pp. (In Russian)
[18] Volkov I. A., Korotkikh Yu. G., Uravneniia sostoianiia viazkouprugoplasticheskikh sred s povrezhdeniiami [Equations of State for Viscoelastic-Plastic Media with Damage], Fizmatlit, Moscow, 2008, 424 pp. (In Russian)
[19] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological Deformation and Fracture of Materials and Structural Elements], Mashinostroenie-1, Moscow, 2004, 265 pp. (In Russian)
[20] Volkov I. A., Igumnov L. A., Smetanin I. V., et al., Polzuchest' i dlitel'naia prochnost' materialov i konstruktsii [Creep and Long-Term Strength of Materials and Structures], Nizhny Novgorod Univ., Nizhny Novgorod, 2021, 155 pp. (In Russian)
[21] Volkov I. A., Igumnov L. A., Shishulin D. N., Otsenka resursnykh kharakteristik materialov i konstruktsii pri ustalosti i polzuchesti [Assessment of Resource Characteristics of Materials and Structures during Fatigue and Creep], Nizhny Novgorod Univ., Nizhny Novgorod, 2020, 106 pp. (In Russian)
[22] Samarin Yu. P., Uravneniia sostoianiia materialov so slozhnymi reologicheskimi svoistvami [Equations of State of Materials with Complex Rheological Properties], Kuybyshev State Univ., Kuybyshev, 1979, 84 pp. (In Russian)
[23] Theoretical and Theoretical-Empirical Methods of Determining the Load-Carrying Capacity and Life of Machine Elements and Structures. Theoretical-Experimental Method of Determining Creep and Rupture-Strength Parameters for Nonsteady Uniaxial Loading (1st ed.), Gosstandart, Moscow, 1982 (In Russian)
[24] Samarin Yu. P., “Derivation of exponential approximations for creep curves by the method of successive isolation of exponential terms”, Strength Mater., 6:9 (1974), 1062–1066 | DOI
[25] Mukhina L. G., “Calculation of creep characteristics from experimental data using the nonparametric alignment method”, Teoretiko-eksperimental'nyi metod issledovaniia v konstruktsiiakh [Theoretical and Experimental Method of Research in Construction], KuAI, Kuybyshev, 1984, 86–94 (In Russian)
[26] Draper N. R., Smith H., Applied Regression Analysis, Wiley Series in Probability and Statistics, New York, 1998, xix+716 pp. | DOI
[27] Demidenko E. Z., Lineinaia i nelineinaia regressii [Linear and Nonlinear Regressions], Finansy i statistika, Moscow, 1981, 302 pp. (In Russian)
[28] Zoteev V. E., “Parametrical identification of creep's curve on the basis of stochastic difference equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 1, 90–95 (In Russian) | DOI
[29] Zoteev V. E., Makarov R. Yu., “A numerical method for determining the parameters of the first stage of creep deformation”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2017, no. 4, 40–48 (In Russian) | DOI
[30] Zoteev V. E., “A numerical method of nonlinear estimation based on difference equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:4 (2018), 669–701 (In Russian) | DOI
[31] Bulygin I. P., Vlasova P. T., Gorbodey A. T. et al., Atlas diagramm rastiazheniia pri vysokikh temperaturakh, krivykh polzuchesti i dlitel'noi prochnosti stalei i splavov dlia dvigatelei [Atlas of Tensile Diagrams at High Temperatures, Curves of Creep and Long-Term Strength of Steels for Engines], Oborongiz, Moscow, 1957, 174 pp. (In Russian)