Inverse problem for an integro-differential equation of hyperbolic type
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 29-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-dimensional inverse problem of determining the kernel of the integral term of an integro-differential equation of hyperbolic type in a variable-bounded domain $x$ is considered. Firstly, the direct problem is investigated, for the regular part of which the Cauchy problem on the axis $x=0$ is obtained using the method of singularity extraction. Subsequently, an integral equation for the unknown function is derived by the d'Alembert formula. For the direct problem, the inverse problem of determining the kernel entering the integral term of the equation is studied. To find it, an additional condition is specified in a special form. As a result, the inverse problem is reduced to an equivalent system of integral equations for unknown functions. The principle of contraction mappings in the space of continuous functions with weighted norms is applied to the obtained system. For the given problem, a theorem of global unique solvability has been proven, which is the main result of the study.
Keywords: integro-differential equation, inverse problem, integral kernel, contraction mapping principle, Banach theorem
@article{VSGTU_2024_28_1_a1,
     author = {J. Sh. Safarov},
     title = {Inverse problem for an integro-differential equation of hyperbolic type},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {29--44},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a1/}
}
TY  - JOUR
AU  - J. Sh. Safarov
TI  - Inverse problem for an integro-differential equation of hyperbolic type
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2024
SP  - 29
EP  - 44
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a1/
LA  - ru
ID  - VSGTU_2024_28_1_a1
ER  - 
%0 Journal Article
%A J. Sh. Safarov
%T Inverse problem for an integro-differential equation of hyperbolic type
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2024
%P 29-44
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a1/
%G ru
%F VSGTU_2024_28_1_a1
J. Sh. Safarov. Inverse problem for an integro-differential equation of hyperbolic type. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 29-44. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a1/

[1] Lorenzi A., Sinestrari E., “Stability results for a partial integrodifferential inverse problem”, Volterra integrodifferential equations in Banach spaces and applications, Proc. Conf., Trento/Italy 1987, Pitman Res. Notes Math. Ser., 190, 1989, 271–294 | Zbl

[2] Lorenzi A., Paparoni E., “Direct and inverse problems in the theory of materials with memory”, Rend. Semin. Mat. Univ. Padova, 87 (1992), 105–138 | Zbl

[3] Lorenzi A., “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Anal., Theory Methods Appl., 22:1 (1994), 21–44 | DOI

[4] Safarov Z. S., Durdiev D. K., “Inverse problem for an integro-differential equation of acoustics”, Differ. Equat., 54:1 (2018), 134–142 | DOI | DOI

[5] Safarov J. S, “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics”, J. Sib. Fed. Univ. Math. Phys., 11:6 (2018), 753–763 | DOI

[6] Romanov V. G., “On the determination of the coefficients in the viscoelasticity equations”, Siberian Math. J., 55:3 (2014), 503–510 | DOI | MR

[7] Durdiev D. K., Safarov Z. S., “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Math. Notes, 97:6 (2015), 867–877 | DOI | DOI | MR

[8] Rahmonov A. A., Durdiev U. D., Bozorov Z. R., “Problem of determining the speed of sound and the memory of an anisotropic medium”, Theoret. and Math. Phys., 207:1 (2021), 494–513 | DOI | DOI

[9] Guidetti D., “Reconstruction of a convolution kernel in a parabolic problem with a memory term in the boundary conditions”, Bruno Pini Mathematical Analysis Seminar, 4:1 (2013), 47–55 | DOI

[10] Cavaterra C., Guidetti D., “Identification of a convolution kernel in a control problem for the heat equation with a boundary memory term”, Ann. Mat. Pura Appl. (4), 193:3 (2014), 779–816 | DOI | Zbl

[11] Janno J., von Wolfersdorf L., “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[12] Durdiev D. K., Rakhmonov A. A., “The problem of determining the 2D kernel in a system of integro-differential equations of a viscoelastic porous medium”, J. Appl. Industr. Math., 14:2 (2020), 281–295 | DOI | DOI

[13] Durdiev D. K., Nuriddinov Zh. Z, “Determination of a multidimensional kernel in some parabolic integro-differential equation”, J. Sib. Fed. Univ. Math. Phys., 14:1 (2021), 117–127 | DOI

[14] Safarov J. Sh., “Two-dimensional inverse problem for an integro-differential equation of hyperbolic type”, J. Sib. Fed. Univ. Math. Phys., 15:5 (2022), 651–662 | DOI | MR

[15] Durdiev D. K., Safarov Zh. Sh., “The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro-differential equation of hyperbolic type”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 4, 37–47 (In Russian) | DOI

[16] Durdiev D. K., Safarov J. Sh., “Problem of determining the two-dimensional kernel of the viscoelasticity equation with a weakly horizontal inhomogeneity”, J. Appl. Ind. Math., 16:1 (2022), 22–44 | DOI | DOI | MR

[17] Durdiev D. K., Safarov J. Sh., “The problem of determining the memory of an environment with weak horizontal heterogeneity”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:3 (2022), 383–402 (In Russian) | DOI | MR

[18] Durdiev D. K., Totieva Z. D., “About global solvability of a multidimensional inverse problem for an equation with memory /”, Siberian Math. J., 62:2 (2021), 215–229 | DOI | DOI

[19] Alekseev A. S., Dobrinskii V. I., “Some questions of practical use of inverse dynamical problems of seismics”, Matematicheskie problemy geofiziki [Mathematical Problems of Geophysics]. Iss. 6, no. 2, Computing Center of the USSR Academy of Sciences, Novosibirsk, 1975, 7–53 (In Russian)

[20] Janno J., von Wolfersdorf L., “Inverse problems for identification of memory kernels in heat flow”, J. Inverse Ill-Posed Probl., 4:1 (1996), 39–66 | DOI | Zbl

[21] Durdiev D., Shishkina E., Sitnik S., “The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space”, Lobachevskii J. Math., 42:6 (2021), 1264–1273, arXiv: [math.CA] 2009.10594 | DOI

[22] Kolmogorov A. N., Fomin S. V, Elementy teorii funktsii i funktsional'nogo analiza [Elements of the Theory of Functions and Functional Analysis], Nauka, Moscow, 1976, 542 pp. (In Russian)

[23] Vladimirov V. S., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1988, 512 pp. (In Russian)

[24] Romanov V. G., Obratnye zadachi matematicheskoi fiziki [Inverse Problem for Mathematical Physics], Nauka, Moscow, 1984, 310 pp. (In Russian)