Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_1_a1, author = {J. Sh. Safarov}, title = {Inverse problem for an integro-differential equation of hyperbolic type}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {29--44}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a1/} }
TY - JOUR AU - J. Sh. Safarov TI - Inverse problem for an integro-differential equation of hyperbolic type JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 29 EP - 44 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a1/ LA - ru ID - VSGTU_2024_28_1_a1 ER -
%0 Journal Article %A J. Sh. Safarov %T Inverse problem for an integro-differential equation of hyperbolic type %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 29-44 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a1/ %G ru %F VSGTU_2024_28_1_a1
J. Sh. Safarov. Inverse problem for an integro-differential equation of hyperbolic type. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 29-44. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a1/
[1] Lorenzi A., Sinestrari E., “Stability results for a partial integrodifferential inverse problem”, Volterra integrodifferential equations in Banach spaces and applications, Proc. Conf., Trento/Italy 1987, Pitman Res. Notes Math. Ser., 190, 1989, 271–294 | Zbl
[2] Lorenzi A., Paparoni E., “Direct and inverse problems in the theory of materials with memory”, Rend. Semin. Mat. Univ. Padova, 87 (1992), 105–138 | Zbl
[3] Lorenzi A., “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Anal., Theory Methods Appl., 22:1 (1994), 21–44 | DOI
[4] Safarov Z. S., Durdiev D. K., “Inverse problem for an integro-differential equation of acoustics”, Differ. Equat., 54:1 (2018), 134–142 | DOI | DOI
[5] Safarov J. S, “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics”, J. Sib. Fed. Univ. Math. Phys., 11:6 (2018), 753–763 | DOI
[6] Romanov V. G., “On the determination of the coefficients in the viscoelasticity equations”, Siberian Math. J., 55:3 (2014), 503–510 | DOI | MR
[7] Durdiev D. K., Safarov Z. S., “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Math. Notes, 97:6 (2015), 867–877 | DOI | DOI | MR
[8] Rahmonov A. A., Durdiev U. D., Bozorov Z. R., “Problem of determining the speed of sound and the memory of an anisotropic medium”, Theoret. and Math. Phys., 207:1 (2021), 494–513 | DOI | DOI
[9] Guidetti D., “Reconstruction of a convolution kernel in a parabolic problem with a memory term in the boundary conditions”, Bruno Pini Mathematical Analysis Seminar, 4:1 (2013), 47–55 | DOI
[10] Cavaterra C., Guidetti D., “Identification of a convolution kernel in a control problem for the heat equation with a boundary memory term”, Ann. Mat. Pura Appl. (4), 193:3 (2014), 779–816 | DOI | Zbl
[11] Janno J., von Wolfersdorf L., “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[12] Durdiev D. K., Rakhmonov A. A., “The problem of determining the 2D kernel in a system of integro-differential equations of a viscoelastic porous medium”, J. Appl. Industr. Math., 14:2 (2020), 281–295 | DOI | DOI
[13] Durdiev D. K., Nuriddinov Zh. Z, “Determination of a multidimensional kernel in some parabolic integro-differential equation”, J. Sib. Fed. Univ. Math. Phys., 14:1 (2021), 117–127 | DOI
[14] Safarov J. Sh., “Two-dimensional inverse problem for an integro-differential equation of hyperbolic type”, J. Sib. Fed. Univ. Math. Phys., 15:5 (2022), 651–662 | DOI | MR
[15] Durdiev D. K., Safarov Zh. Sh., “The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro-differential equation of hyperbolic type”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 4, 37–47 (In Russian) | DOI
[16] Durdiev D. K., Safarov J. Sh., “Problem of determining the two-dimensional kernel of the viscoelasticity equation with a weakly horizontal inhomogeneity”, J. Appl. Ind. Math., 16:1 (2022), 22–44 | DOI | DOI | MR
[17] Durdiev D. K., Safarov J. Sh., “The problem of determining the memory of an environment with weak horizontal heterogeneity”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:3 (2022), 383–402 (In Russian) | DOI | MR
[18] Durdiev D. K., Totieva Z. D., “About global solvability of a multidimensional inverse problem for an equation with memory /”, Siberian Math. J., 62:2 (2021), 215–229 | DOI | DOI
[19] Alekseev A. S., Dobrinskii V. I., “Some questions of practical use of inverse dynamical problems of seismics”, Matematicheskie problemy geofiziki [Mathematical Problems of Geophysics]. Iss. 6, no. 2, Computing Center of the USSR Academy of Sciences, Novosibirsk, 1975, 7–53 (In Russian)
[20] Janno J., von Wolfersdorf L., “Inverse problems for identification of memory kernels in heat flow”, J. Inverse Ill-Posed Probl., 4:1 (1996), 39–66 | DOI | Zbl
[21] Durdiev D., Shishkina E., Sitnik S., “The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space”, Lobachevskii J. Math., 42:6 (2021), 1264–1273, arXiv: [math.CA] 2009.10594 | DOI
[22] Kolmogorov A. N., Fomin S. V, Elementy teorii funktsii i funktsional'nogo analiza [Elements of the Theory of Functions and Functional Analysis], Nauka, Moscow, 1976, 542 pp. (In Russian)
[23] Vladimirov V. S., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1988, 512 pp. (In Russian)
[24] Romanov V. G., Obratnye zadachi matematicheskoi fiziki [Inverse Problem for Mathematical Physics], Nauka, Moscow, 1984, 310 pp. (In Russian)