Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_1_a0, author = {A. R. Bagrov and E. K. Bashkirov}, title = {Dynamics of a thermal entanglement in the not-resonant three-qubit {Tavis--Cummings} model with {Kerr} nonlinearity}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {7--28}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a0/} }
TY - JOUR AU - A. R. Bagrov AU - E. K. Bashkirov TI - Dynamics of a thermal entanglement in the not-resonant three-qubit Tavis--Cummings model with Kerr nonlinearity JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 7 EP - 28 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a0/ LA - ru ID - VSGTU_2024_28_1_a0 ER -
%0 Journal Article %A A. R. Bagrov %A E. K. Bashkirov %T Dynamics of a thermal entanglement in the not-resonant three-qubit Tavis--Cummings model with Kerr nonlinearity %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 7-28 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a0/ %G ru %F VSGTU_2024_28_1_a0
A. R. Bagrov; E. K. Bashkirov. Dynamics of a thermal entanglement in the not-resonant three-qubit Tavis--Cummings model with Kerr nonlinearity. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 1, pp. 7-28. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_1_a0/
[1] Buluta I., Ashhab S., Nori F., “Natural and artificial atoms for quantum computation”, Rep. Prog. Phys., 74:10 (2011), 104401, arXiv: [quant-ph] 1002.1871 | DOI
[2] Xiang Z.-L., Ashhab S., You J. Y., Nori F., “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems”, Rev. Mod. Phys., 85:2 (2013), 623–653, arXiv: [quant-ph] 1204.2137 | DOI
[3] Georgescu I. M., Ashhab S., Nori F., “Quantum simulation”, Rev. Mod. Phys., 88:1 (2014), 153–185, arXiv: [quant-ph] 1308.6253 | DOI
[4] Gu X., Kockum A.F., Miranowicz A., et al., “Microwave photonics with superconducting quantum circuits”, Phys. Reports, 718–719 (2017), 1–102, arXiv: [quant-ph] 1707.02046 | DOI | Zbl
[5] Wendin G., “Quantum information processing with super-conducting circuits: a review”, Rep. Prog. Phys., 80:10 (2017), 106001, arXiv: [quant-ph] 1610.02208 | DOI
[6] Kjaergaard M., Schwartz M. E., Braumüller J., et al., “Superconducting qubits: Current state of play”, Annu. Rev. Condens. Matter Phys., 11 (2020), 369–395, arXiv: [quant-ph] 1905.13641 | DOI
[7] Huang H.-L., Wu D., Fan D., Zhu X., “Superconducting quantum computing: a review”, Sci. China Inf. Sci., 63 (2020), 180501, arXiv: [quant-ph] 2006.10433 | DOI
[8] Chen J., “Review on quantum communication and quantum computation”, J. Phys.: Conf. Ser., 1865 (2021), 022008 | DOI
[9] Chernega V. N., Man'ko O. V., Man'ko V. I., “Entangled qubit states and linear entropy in the probability representation of quantum mechanics”, Entropy, 24:4 (2022), 527 | DOI
[10] Li G.-Q., Pan X.-Y., “Quantum information processing with nitrogen–vacancy centers in diamond”, Chinese Phys. B, 27:2 (2018), 020304 | DOI
[11] Shore B. W., Knight P. L., “The Jaynes–Cummings model”, J. Mod. Opt., 40:7 (1992), 1195–1238 | DOI
[12] Walther H, Varcoe B. T. H., Englert B.-G., Becker T., “Cavity quantum electrodynamics”, Rep. Prog. Phys, 69:5 (2011), 1325–1382 | DOI
[13] Popov E. N., Reshetov V. A., “Controllable source of single photons based on a micromaser with an atomic beam without inversion”, JETP Lett., 111:12 (2020), 727–733 | DOI
[14] Reshetov V. A., “Jaynes–Cummings model with degenerate atomic levels and two polarization modes of the quantized field”, Laser Phys. Lett., 16:4 (2019), 046001 | DOI
[15] Wootters W. K., “Entanglement of formation of an arbitrary state of two qubits”, Phys. Rev. Lett., 80:10 (1998), 2245–2248, arXiv: quant-ph/9709029 | DOI | Zbl
[16] Peres A., “Separability criterion for density matrices”, Phys. Rev. Lett., 77:8 (1996), 1413–1415, arXiv: quant-ph/9604005 | DOI | Zbl
[17] Horodecki R., Horodecki M., Horodecki P., “Separability of mixed states: Necessary and sufficient conditions”, Phys. Lett. A, 223:1–2 (1996), 1–8, arXiv: quant-ph/9605038 | DOI | Zbl
[18] Zha X., Yuan C., Zhang Y., “Generalized criterion for a maximally multi-qubit entangled state”, Laser Phys. Lett., 10:4 (2013), 045201, arXiv: [quant-ph] 1204.6340 | DOI
[19] Gühne O., Seevinck M., “Separability criteria for genuine multiparticle entanglement”, New J. Phys., 12 (2010), 053002, arXiv: [quant-ph] 0905.1349 | DOI | Zbl
[20] Pereira L., Zambrano L., Delgado A., “Scalable estimation of pure multi-qubit states”, npj Quantum Inf., 8 (2022), 57, arXiv: [quant-ph] 2107.05691 | DOI
[21] Zhahir A. A., Mohd S. M., Shuhud M. I. M., et al., “Entanglement quantification and classification: A systematic liteature review”, Int. J. Adv. Comp. Sci. Appl., 13:5 (2022), 218–225 | DOI
[22] Dür W., Cirac J. I., “Classification of multiqubit mixed states: Separability and distillability properties”, Phys. Rev. A, 61:4 (2000), 042314, arXiv: quant-ph/9911044 | DOI
[23] Dür W., Cirac J. I., Vidal G., “Three qubits can be entangled in two inequivalent ways”, Phys. Rev. A, 62:6 (2000), 062314, arXiv: quant-ph/0005115 | DOI
[24] Acín A., Bruß D., Lewenstein M., Sanpera A., “Classification of mixed three-qubit states”, Phys. Rev. Lett., 87:4 (2000), 040401, arXiv: quant-ph/0103025 | DOI
[25] Sabín C., García-Alcaine G.,, “A classification of entanglement in three-qubit systems”, Eur. Phys. J. D, 48 (2008), 435–442, arXiv: [quant-ph] 0707.1780 | DOI
[26] Mohd S. Idrus B., Zainuddin H., Mukhtar M., “Entanglement classification for a three-qubit system using special unitary groups, SU(2) and SU(4)”, Int. J. Adv. Comp. Sci. Appl., 10:7 (2019), 374–379 | DOI
[27] Akbari-Kourbolagh Y., “Entanglement criteria for the three-qubit states”, Int. J. Quantum Inf., 15:7 (2017), 1750049 | DOI | Zbl
[28] Kendon V., Nemoto K., Munro W., “Typical entanglement in multiple-qubit systems”, J. Mod. Opt., 49:10 (2001), 1709–1716, arXiv: quant-ph/0106023 | DOI
[29] Kim M. S., Lee J., Ahn D., Knight P. L., “Entanglement induced by a single-mode heat environment”, Phys. Rev. A, 65:4 (2002), 040101(R), arXiv: quant-ph/0109052 | DOI
[30] Zhang B., “Entanglement between two qubits interacting with a slightly detuned thermal field”, Optics Commun., 283:23 (2010), 4676–4679 | DOI
[31] Bashkirov E. K., “Thermal entanglement between a Jaynes–Cummings atom and an isolated atom”, Int. J. Theor. Phys., 57:12 (2018), 3761–3771 | DOI | Zbl
[32] Jin-Fang C., Hui-Ping L., “Entanglement in three-atom Tavis–Cummings model induced by a thermal field”, Commun. Ther. Phys., 43:3 (2005), 427 | DOI
[33] Yu T., Eberly J. H., “Sudden death of entanglement”, Science, 323:5914 (2009), 598–601, arXiv: [quant-ph] 0910.1396 | DOI | Zbl
[34] Wang F., Hou P.-Y., Huang Y. Y., et al., “Observation of entanglement sudden death and rebirth by controlling a solid-state spin bath”, Phys. Rev. B, 98:6 (2018), 064306, arXiv: [quant-ph] 1801.02729 | DOI
[35] Sun G., Zhou Z., Mao B., Wen X., et al., “Entanglement dynamics of a superonducting phase qubit coupled to a two-level system”, Phys. Rev. B, 86:1 (2012), 064502, arXiv: [cond-mat.mes-hall] 1111.3016 | DOI
[36] Salles A., de Melo F., Almeida M. P., et al., “Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment”, Phys. Rev. A, 78:2 (2008), 022322, arXiv: [quant-ph] 0804.4556 | DOI
[37] Bashkirov E. K., “Entanglement in Tavis-Cummings model with Kerr nonlinearity induced by a thermal noise” (Saratov Fall Meeting 2020: Laser Physics, Photonic Technologies, and Molecular Modeling, 4 May 2021), Proc. SPIE, 11846 (2021), 11846OW | DOI
[38] Bagrov A.R., Bashkirov E.K., “Dynamics of the three-qubits Tavis–Cummings model”, Vestnik of Samara University. Natural Science Series, 28:1–2 (2022), 95–105 (In Russian) | DOI
[39] Kirchmair G., Vlastakis B., Leghtas Z., et al., “Observation of quantum state collapse and revival due to the single-photon Kerr effect”, Nature, 495 (2013), 205–209, arXiv: [quant-ph] 1211.2228 | DOI