Mathematical modeling of sunspot nucleation at the photospheric level of the Sun
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 4, pp. 723-736.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present study, the initial stage of the generation of a group of sunspots at the photospheric level of the Sun is studied by computer simulation. The development of the nonlinear phase of the Parker instability of large-scale oscillations of magnetic fields in the middle layers of the convective zone is numerically modeled. The process of adiabatic cooling of a thin magnetic tube that floats from depths of the order of 100,000 km to the photospheric level is studied. The results of the calculations make it possible to analyze in detail the change in the magnetogasdynamic parameters of the tube at different depths of the convective zone, and to obtain the values of the physical parameters of emerging sunspots that can be compared with observational data. The paper investigates the physical mechanism of the time delay in the formation of the head part of the active region compared with the formation of the sprayed tail part. The problem of stability of nascent active regions is also being investigated. The physical parameters determining the stability of the formed active regions at various phases of the solar activity cycle are highlighted. The physical mechanism of generation of a powerful shock wave flux in the initial stage of the nucleation of the active region, which makes a significant contribution to the abnormal heating of the solar atmosphere recorded in the observational data, has been determined.
Keywords: photosphere, sunspots, convective zone of the Sun, magnetic tube, Parker instability
@article{VSGTU_2023_27_4_a6,
     author = {D. V. Romanov and K. V. Romanov and V. A. Romanov and E. A. Stepanov and A. A. Lebedev},
     title = {Mathematical modeling of sunspot nucleation at the photospheric level of the {Sun}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {723--736},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a6/}
}
TY  - JOUR
AU  - D. V. Romanov
AU  - K. V. Romanov
AU  - V. A. Romanov
AU  - E. A. Stepanov
AU  - A. A. Lebedev
TI  - Mathematical modeling of sunspot nucleation at the photospheric level of the Sun
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 723
EP  - 736
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a6/
LA  - ru
ID  - VSGTU_2023_27_4_a6
ER  - 
%0 Journal Article
%A D. V. Romanov
%A K. V. Romanov
%A V. A. Romanov
%A E. A. Stepanov
%A A. A. Lebedev
%T Mathematical modeling of sunspot nucleation at the photospheric level of the Sun
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 723-736
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a6/
%G ru
%F VSGTU_2023_27_4_a6
D. V. Romanov; K. V. Romanov; V. A. Romanov; E. A. Stepanov; A. A. Lebedev. Mathematical modeling of sunspot nucleation at the photospheric level of the Sun. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 4, pp. 723-736. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a6/

[1] Bray R. J., Loughhead R. E., Sunspots, Dover Publ., New York, 1979, 303 pp.

[2] Obridko V. N., Solnechnye piatna i kompleksy aktivnosti [Sunspots and Activity Complexes], Nauka, Moscow, 1985, 255 pp. (In Russian)

[3] Tlatov A. G., “Lifetime of sunspots and pores”, Sol. Phys., 298 (2023), 93 | DOI

[4] Parker E. N., Cosmical Magnetic Fields. Their Origin and their Activity, The International Series of Monographs on Physics, Clarendon Press, Oxford, 1979, xvii+841 pp.

[5] Tlatov A. G., “Dark dots on the photosphere and their counting in the sunspot index”, Sol. Phys., 297 (2022), 67, arXiv: [astro-ph.SR] 2205.13142 | DOI

[6] Alissandrakis C. E., Vial J-C., “Explosive events in the quiet Sun near and beyond the solar limb observed with the Interface Region Imaging Spectrograph (IRIS)”, Sol. Phys., 298 (2023), 18, arXiv: [astro-ph.SR] 2301.07190 | DOI

[7] Grigor'ev V. M., Ermakova L. V., Khlystova A. I., “Emergence of magnetic flux at the solar surface and the origin of active regions”, Astron. Rep., 53:9 (2009), 869–878 | DOI

[8] Alekseenko S. V., Dudnikova G. I., Romanov V. A., et al., “Magnetic field instabilities in the solar convective zone”, Rus. J. Eng. Thermophys., 10 (2000), 243–262

[9] Spruit H. C., Zweibel E. G., “Convective instability of thin flux tubes”, Sol. Phys., 62:1 (1979), 15–22 | DOI

[10] Ruderman M. S., Petrukhin N. S., “Nonlinear generation of fluting perturbations by kink mode in a twisted magnetic tube”, Sol. Phys., 297:9 (2022), 116 | DOI

[11] Christensen–Dalsgaard J., Däppen W., Ajukov S. V., et al., “The current state of Solar modeling”, Science, 272:5266 (1996), 1286–1292 | DOI

[12] Parker E. N., “Theoretical properties of Omega-loops in the convective zone of the Sun. 1: Emerging bipolar magnetic regions”, Astrophys. J., 433 (1994), 867–874 | DOI

[13] Stepanov E. A., Maiorov A. O., Romanov K. V., et al., “Mathematical modeling of the development of the Parker instability of large-scale oscillations of magnetic fields in the convective zone of the Sun”, Izv. Sarat. Univ. Physics, 21:2 (2021), 102–115 (In Russian) | DOI

[14] Zurbriggen E., Cécere M., Sieyra M. V., et al., “An MHD study of large-amplitude oscillations in Solar filaments”, Sol. Phys., 296 (2021), 173, arXiv: [astro-ph.SR] 2110.07687 | DOI

[15] Hamada A., Asikainen T., Mursula K., “New homogeneous dataset of Solar EUV synoptic maps from SOHO/EIT and SDO/AIA”, Sol. Phys., 295:1 (2019), 2 | DOI