Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_4_a4, author = {N. V. Sevodina and N. A. Iurlova and D. A. Oshmarin}, title = {Method for determining the parameters of an electrical signal for controlling forced steady-state vibrations of electroviscoelastic bodies. {Mathematical} relations}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {679--703}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a4/} }
TY - JOUR AU - N. V. Sevodina AU - N. A. Iurlova AU - D. A. Oshmarin TI - Method for determining the parameters of an electrical signal for controlling forced steady-state vibrations of electroviscoelastic bodies. Mathematical relations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 679 EP - 703 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a4/ LA - ru ID - VSGTU_2023_27_4_a4 ER -
%0 Journal Article %A N. V. Sevodina %A N. A. Iurlova %A D. A. Oshmarin %T Method for determining the parameters of an electrical signal for controlling forced steady-state vibrations of electroviscoelastic bodies. Mathematical relations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 679-703 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a4/ %G ru %F VSGTU_2023_27_4_a4
N. V. Sevodina; N. A. Iurlova; D. A. Oshmarin. Method for determining the parameters of an electrical signal for controlling forced steady-state vibrations of electroviscoelastic bodies. Mathematical relations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 4, pp. 679-703. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a4/
[1] Park G., Sausse M., Inman D. J., Main J. A., “Vibration testing and finite element analysis of inflatable structures”, AIAA J., 41:8 (2003), 1556–1566 | DOI
[2] Nye T. W., Manning R. A., Qassim K., “Performance of active vibration control technology: the ACTEX flight experiments”, Smart Mater. Struct., 8:6 (1999), 767–780 | DOI
[3] Denoyer K. K., Erwin R. S., Ninneman R. R., “Advanced smart structures flight experiments for precision spacecraft”, Acta Astronautica, 47:2–9 (2000), 389–397 | DOI
[4] Makhtoumi M., “Active vibration control of launch vehicle on satellite using piezoelectric stack actuator”, J. Space Technol., 8:1 (2018), 1–11, arXiv: [physics.space-ph] 1903.07396
[5] Kajiwara I., Uchiyama T., Arisaka T., “Vibration control of hard disk drive with smart structure technology for improving servo performance”, Motion and Vibration Control, Springer, Dordrecht, 2009, 165–176 | DOI
[6] Tani J., Takagi T., Qiu J., “Intelligent material systems: Application of functional materials”, Appl. Mech. Rev., 51:8 (1998), 505–521 | DOI
[7] Sobczyk M., Wiesenh\utter S., Noennig J. R., Wallmersperger T., “Smart materials in architecture for actuator and sensor applications: A review”, J. Intelligent Mater. Syst. Struct., 33:3 (2022), 379–399 | DOI
[8] Chen C., Sharafi A., Sun J., “A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation”, Applied Energy, 269 (2020), 115073 | DOI
[9] Yang K., Zhu J., Wu M., Zhang W., “Integrated optimization of actuators and structural topology of piezoelectric composite structures for static shape control”, Comp. Meth. Appl. Mech. Eng., 334 (2018), 440–469 | DOI
[10] Ayres J. W., Rogers C. A., Chaudhry Z. A., “Qualitative health monitoring of a steel bridge joint via piezoelectric actuator/sensor patches” (22 April 1996), Proc SPIE, 2719, Smart Structures and Materials 1996: Smart Systems for Bridges, Structures, and Highways (2019), 123–131 | DOI
[11] Marakakis K., Tairidis G. K., Koutsianitis P., Stavroulakis G. E., “Shunt piezoelectric systems for noise and vibration control: A Review”, Front. Built Environ., 5 (2019), 64 | DOI
[12] Moheimani S. O. R., Vautier B. J. G., “Resonant control of structural vibration using charge-driven piezoelectric actuators”, IEEE Trans. Contr. Sys. Technol., 13:6 (2005), 1021–1035 | DOI
[13] Alkhatib R., Golnaraghi M. F., “Active structural vibration control: A Review”, The Shock and Vibration Digest, 35:5 (2003), 367–383 | DOI
[14] Fisco N. R, Adeli H., “Smart structures: Part I — Active and semi-active control”, Scientia Iranica, 18:3 (2011), 275–284 | DOI
[15] Fuller C. R., Elliot S. J., Nelson P. A., Active Control of Vibration, Academic Press, London, 1997, xii+332 pp. | DOI
[16] Preumont A., Vibration Control of Active Structures: An Introduction, Springer, Dordrecht, 2011, xx+436 pp. | DOI
[17] Aktas K. G., Esen I., “State-space modeling and active vibration control of smart flexible cantilever beam with the use of finite element method”, Eng. Technol. Appl. Sci. Res., 10:6 (2020), 6549–6556 | DOI
[18] Preumont A., “Active damping, vibration isolation, and shape control of space structures: A tutorial”, Actuators, 12:3 (2016), 122–147 | DOI
[19] Ding B., Li Y., Xiao X., Tang Y., “Optimized PID tracking control for piezoelectric actuators based on the Bouc–Wen model”, 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 1576–1581 | DOI
[20] Sareban M., “Evaluation of Three Common Algorithms for Structure Active Control”, Eng. Technol. Appl. Sci. Res., 7:3 (2017), 1638–1646 | DOI
[21] Płaczek M., “The study of a control signal's phase shift influence on the efficiency of a system for active vibration damping based on MFC piezoelectric transducers”, MATEC Web Conf., 318 (2020), 01005 | DOI
[22] Fisco N. R, Adeli H., “Smart structures: Part II — Hybrid control systems and control strategies”, Scientia Iranica, 18:3 (2011), 285–295 | DOI
[23] Kumar R., Singh S. P., Chandrawat H. N., “MIMO adaptive vibration control of smart structures with quickly varying parameters: Neural networks vs classical control approach”, J. Sound Vibration, 307:3-5 (2023), 639–661 | DOI
[24] Matveenko V. P., Iurlova N. A., Oshmarin D. A., Sevodina N. V., “Analysis of dissipative properties of electro-viscoelastic bodies with shunting circuits on the basis of numerical modelling of natural vibrations”, Acta Mech., 234:1 (2023), 261–276 | DOI
[25] Matveenko V. P., Oshmarin D. A., Sevodina N. V., Iurlova N. A., “Problem on natural vibrations of electroviscoelastic bodies with external electric circuits and finite element relations for its implementation”, Computational Continuum Mechanics, 9:4 (2016), 476–485 (In Russian) | DOI
[26] Kligman E. P., Matveenko V. P., “Vibration problem of viscoelastic solids as applied to optimization of dissipative properties of constructions”, J. Vibration Control, 3:1 (1997), 87–102 | DOI
[27] Kligman E. P., Matveenko V. P., Sevodina N. V., “Determination of natural oscillations of piece-wise homogeneous viscoelastic bodies using the ANSYS package”, Computational Continuum Mechanics, 3:2 (2010), 46–54 (In Russian) | DOI
[28] ANSYS, Release 2022 R1 Documentation, Canonsburg, 2022
[29] Iurlova N. A., Oshmarin D. A., Sevodina N. V., “A numerical analysis of forced steady-state vibrations of an electro-viscoelastic system in case of a joint impact of electrical and mechanical loads”, PNRPU Mechanics Bulletin, 2022, no. 4, 67–79 (In Russian) | DOI