Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_4_a3, author = {E. V. Murashkin and Yu. N. Radayev}, title = {Thermomechanical states of gyrotropic micropolar solids}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {659--678}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a3/} }
TY - JOUR AU - E. V. Murashkin AU - Yu. N. Radayev TI - Thermomechanical states of gyrotropic micropolar solids JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 659 EP - 678 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a3/ LA - ru ID - VSGTU_2023_27_4_a3 ER -
%0 Journal Article %A E. V. Murashkin %A Yu. N. Radayev %T Thermomechanical states of gyrotropic micropolar solids %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 659-678 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a3/ %G ru %F VSGTU_2023_27_4_a3
E. V. Murashkin; Yu. N. Radayev. Thermomechanical states of gyrotropic micropolar solids. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 4, pp. 659-678. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a3/
[1] Lakes R., “Elastic and viscoelastic behavior of chiral materials”, Int. J. Mech. Sci., 43:7 (2001), 1579–1589 | DOI | Zbl
[2] Mackay T. G., Lakhtakia A., “Negatively refracting chiral metamaterials: a review”, SPIE Reviews, 1:1 (2010), 018003 | DOI
[3] Tomar S. K., Khurana A., “Wave propagation in thermo-chiral elastic medium”, Appl. Math. Model., 37:22 (2013), 9409–9418 | DOI | Zbl
[4] Radayev Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 504–517 (In Russian) | DOI | Zbl
[5] Neuber H., “Über Probleme der Spannungskonzentration im Cosserat–Körper”, Acta Mechanica, 2 (1966), 48–69 | DOI | Zbl
[6] Neuber H., “On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua”, Applied Mechanics, eds. H. Görtler, Springer, Berlin, Heidelberg, 1966, 153–158 | DOI
[7] Radayev Yu. N., Murashkin E. V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Problems of Strength and Plasticity, 82:4 (2020), 399–412 (In Russian) | DOI
[8] Murashkin E. V., Radayev Yu. N., “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424–444 | DOI | Zbl
[9] Murashkin E. V., Radayev Yu. N., “On the theory of linear hemitropic micropolar media”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2020, no. 4(46), 16–24 (In Russian) | DOI
[10] Murashkin E. V., Radayev Yu. N., “Coupled thermoelasticity of hemitropic media. Pseudotensor formulation”, Mech. Solids, 58:3 (2023), 802–813 | DOI
[11] Murashkin E. V., Radayev Yu. N., “A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity”, Lobachevskii J. Math., 44:6 (2023), 2440–2449 | DOI
[12] Truesdell C., Toupin R., “The classical field theories”, Encyclopedia of Physics, v. III/1, Principles of Classical Mechanics and Field Theory, eds. S. Flügge, Springer, Berlin, Göttingen, Heidelberg, 1960, 226–902 | DOI
[13] Schouten J. A., Tensor Analysis for Physicist, Clarendon Press, Oxford, 1951, 434 pp.
[14] Sokolnikoff I. S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, John Wiley Sons, 1964, 361 pp. | Zbl
[15] Synge J. L., Schild A., Tensor Calculus, Dover Publ., New York, 1978, xi+324 pp. | Zbl
[16] Das A. J., Tensors: The Mathematics of Relativity Theory and Continuum Mechanics, Springer Science Business Media, Berlin, 2007, xii+290 pp. | DOI | Zbl
[17] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, Noordhoff, Groningen, 1964, 429 pp. | Zbl
[18] Veblen O., Thomas T. Y., “Extensions of relative tensors”, Trans. Amer. Math. Soc., 26:3 (1924), 373–377 | DOI
[19] Veblen O., Invariants of Quadratic Differential Forms, Cambridge Univ. Press, Cambridge, 1927, viii+102 pp.
[20] Cosserat E., Cosserat F., Théorie des Corps déformables, A. Herman et Fils, Paris, 1909, vi+226 pp.
[21] Nowacki W., Theory of Micropolar Elasticity, Springer, Wien, 1972, 285 pp. | DOI | Zbl
[22] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, viii+383 pp. | Zbl
[23] Dyszlewicz J., Micropolar Theory of Elasticity, Lecture Notes in Applied and Computational Mechanics, Springer, Berlin, Heidelberg, 2004, xv+345 pp. | DOI | Zbl
[24] Besdo D., “Ein Beitrag zur nichtlinearen Theorie des Cosserat–Kontinuums”, Acta Mechanica, 20:1 (1974), 105–131 | DOI | Zbl
[25] Murashkin E. V., Radayev Yu. N., “Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space”, Uchen. Zap. Kazan. Univ. Ser. Fiz.-Matem. Nauki, 165:4 (2023) (In Russian)
[26] Murashkin E. V., Radayev Yu. N., “Schouten's force stress tensor and affinor densities of positive weight”, Problems of Strength and Plasticity, 84:4 (2022), 545–558 (In Russian) | DOI
[27] Murashkin E. V., Radayev Yu. N., “The Schouten force stresses in continuum mechanics formulations”, Mech. Solids, 58:1 (2023), 153–160 | DOI | DOI | Zbl | Zbl
[28] Kovalev V. A., Radayev Yu. N., Elementy teorii polia: variatsionnye simmetrii i geometricheskie invarianty [Elements of Field Theory: Variational Symmetries and Geometric Invariants], Fizmatlit, Moscow, 2009, 160 pp. (In Russian)
[29] Kovalev V. A., Radayev Yu. N., Volnovye zadachi teorii polia i termomekhanika [Wave Problems of Field Theory and Thermomechanics], Saratov Univ., Saratov, 2010, 328 pp. (In Russian)
[30] Murashkin E. V., Radayev Yu. N., “On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021), 776–786 (In Russian) | DOI | Zbl
[31] Murashkin E. V., Radayev Yu. N., “On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space”, Mech. Solids, 57:2 (2022), 205–213 | DOI | DOI | Zbl
[32] Finikov S. P., Metod vneshnikh form Kartana v differentsial'noi geometrii [Cartan's Method of External Forms in Differential Geometry], GITTL, Leningrad, Moscow, 1948, 432 pp. (In Russian)
[33] Cartan H., Differentsial'noe ischislenie. Differentsial'nye formy [Differential Calculus. Differential Forms], Mir, Moscow, 1971, 392 pp. (In Russian)
[34] Efimov N. V., Vvedenie v teoriiu vneshnikh form [Introduction to the Theory of External Forms], Nauka, Moscow, 1977, 88 pp. (In Russian)
[35] Pars L. A., Analiticheskaia dinamika [Analytical Dynamics], Nauka, Moscow, 1971, 636 pp. (In Russian)
[36] Radayev Yu. N., “Tensors with constant components in the constitutive equations of hemitropic micropolar solids”, Mech. Solids, 58:5 (2023), 1517–1527 | DOI | DOI
[37] Murashkin E. V., Radayev Yu. N., “Algebraic algorithm for systematically reducing one-point pseudotensors to absolute tensors”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 1(51), 17–26 (In Russian) | DOI
[38] Rozenfel'd B. A., Mnogomernye prostranstva [Multidimensional Spaces], Nauka, Moscow, 1966, 648 pp. (In Russian)
[39] Murashkin E. V., Radayev Y. N., “Covariantly constant tensors in Euclidean spaces. Elements of the theory”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 2(52), 106–115 (In Russian) | DOI
[40] Murashkin E. V., Radayev Yu. N., “Covariantly constant tensors in Euclidean spaces. Applications to continuum mechanics”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 2(52), 118–127 (In Russian) | DOI
[41] Poincaré H., “Sur les residus des integrales doubles”, Acta math, 6 (1887), 321–380
[42] Poincaré H., “Analysis situs”, J. Éc. Politech., 2:1 (1895), 1–123 (In French) | Zbl
[43] Murashkin E. V., “On the formulation of boundary conditions in problems of synthesis of woven 3D materials”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2021, no. 1(47), 114–121 (In Russian) | DOI
[44] Jeffreys H., Cartesian Tensors, Cambridge Univ. Press, Cambridge, 1931, 105 pp.