Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_4_a1, author = {A. K. Urinov and D. D. Oripov}, title = {On the solvability of an initial boundary problem for a high even order degenerate equation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {621--644}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a1/} }
TY - JOUR AU - A. K. Urinov AU - D. D. Oripov TI - On the solvability of an initial boundary problem for a high even order degenerate equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 621 EP - 644 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a1/ LA - ru ID - VSGTU_2023_27_4_a1 ER -
%0 Journal Article %A A. K. Urinov %A D. D. Oripov %T On the solvability of an initial boundary problem for a high even order degenerate equation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 621-644 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a1/ %G ru %F VSGTU_2023_27_4_a1
A. K. Urinov; D. D. Oripov. On the solvability of an initial boundary problem for a high even order degenerate equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 4, pp. 621-644. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a1/
[1] Tikhonov A. N., Samarskii A. A., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1966, 724 pp. (In Russian)
[2] Timoshenko S. P., Vibration Problems in Engineering, Wiley, Chichester, 1974, 538 pp.
[3] Korenev B. G., Voprosy rascheta balok i plit na uprugom osnovanii [Analysis of Beams and Plates on Elastic Foundation], Stroiizdat, Moscow, 1954, 156 pp. (In Russian)
[4] Filippov A. P., Kolebaniia deformiruemykh sistem [Oscillations of Deformable Systems], Mashinostroenie, Moscow, 1970, 734 pp. (In Russian)
[5] Krylov A. N., Vibratsiia sudov [Vibration of Ships], Leningrad, Moscow, 1936 (In Russian)
[6] Sabitov K. B., “Cauchy problem for the beam vibration equation”, Differ. Equat., 53:5 (2017), 658–664 | DOI | DOI
[7] Sabitov K. B., “Fluctuations of a beam with clamped ends”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 311–324 (In Russian) | DOI | Zbl
[8] Sabitov K. B., “A remark on the theory of initial-boundary value problems for the equation of rods and beams”, Differ Equat., 53:1 (2017), 86–98 | DOI | DOI
[9] Sabitov K. B., Akimov A. A., “Initial-boundary value problem for a nonlinear beam vibration equation”, Differ. Equat., 56:5 (2020), 621–634 | DOI | DOI
[10] Sabitov K. B., “Inverse problems of determining the right-hand side and the initial conditions for the beam vibration equation”, Differ. Equat., 56:6 (2020), 761–774 | DOI | DOI
[11] Sabitov K. B., Fadeeva O. V., “Initial-boundary value problem for the equation of forced vibrations of a cantilever beam”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:1 (2021), 51–66 (In Russian) | DOI | Zbl
[12] Urinov A. K., Azizov M. S., “A boundary problem for the loaded partial differential equations of fourth order”, Lobachevskii J. Math., 42:3 (2021), 621–631 | DOI
[13] Urinov A. K., Azizov M. S., “Boundary value problems for a fourth order partial differential equation with an unknown right-hand part”, Lobachevskii J. Math., 42:3 (2021), 632–640 | DOI
[14] Sabitov K. B., “Initial-boundary value problems for equation of oscillation of a rectangular plate”, Russian Math. (Iz. VUZ), 65:10 (2021), 52–62 | DOI | DOI
[15] Sabitov K. B., “Vibrations of plate with boundary “hinged attachment” conditions”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:4 (2022), 650–671 (In Russian) | DOI
[16] Kasimov S. G., Madrakhimov U. S., “Initial-boundary value problem for the beam vibration equation in the multidimensional case”, Differ. Equat., 55:10 (2019), 1336–1348 | DOI | DOI
[17] Amanov D. J., Yuldasheva A. V., “Solvability and spectral properties of boundary value problems for equations of even order”, Malays. J. Math. Sci., 3:2 (2009), 227–248
[18] Amanov D., Ashyralyev A., “Well-posedness of boundary value problems for partial differential equations of even order”, AIP Conf. Proc., 1470:1 (2012), 3–7 | DOI
[19] Irgashev B. Yu., “On a problem with conjugation conditions for an equation of even order involving a Caputo fractional derivative”, Math. Notes, 112:2 (2022), 215–222 | DOI | DOI | MR
[20] Urinov A. K., Azizov M. S., “An initial boundary value problem for a partial differential equation of higher even order with a Bessel operator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 26:2 (2022), 273–292 (In Russian) | DOI
[21] Urinov A. K., Azizov M. S., “On the solvability of nonlocal initial-boundary value problems for a partial differential equation of high even order”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:2 (2022), 240–255 (In Russian) | DOI | MR
[22] Azizov M. S., “About an initial-boundary value problem for a partial differential equation of higher even order with the Bessel operator”, Bull. Inst. Math., 5:1 (2022), 14–24 (In Russian)
[23] Urinov A. K., Usmonov D. A., “An initial-boundary problem for a hyperbolic equation with three lines of degenerating of the second kind”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:4 (2022), 672–693 (In Russian) | DOI
[24] Urinov A. K., Usmonov D. A., “Initial boundary value problems for a fourth order equation with three lines of degeneracy”, Uzbek Math. J., 67:1 (2023), 129–136 | DOI
[25] Urinov A. K., Usmonov D. A., Vestnik KRAUNC. Fiz.-Mat. Nauki, 42:1 (2023), 123–139 (In Russian) | DOI
[26] Baikuziev K. B., Kalanov B. S., “On the solvability of a mixed problem for a higher-order equation that degenerates on the boundary of a domain”, Boundary Value Problems for Differential Equations, v. 2, Fan, Tashkent, 1972, 40–54 (In Russian)
[27] Irgashev B. Yu., “A boundary value problem with conjugation conditions for a degenerate the equations with the Caputo fractional derivative”, Russian Math. (Iz. VUZ), 66:4 (2022), 24–31 (In Russian) | DOI | DOI
[28] Urinov A. K., Azizov M. S., “About an initial boundary problem for a degenerate higher even order partial differential equation”, Sib. Zh. Ind. Mat., 26:2 (2023), 155–170 (In Russian) | DOI
[29] Urinov A. K., Azizov M. S., “On an initial boundary value problem for a degenerate partial differential equation of high even order”, Nonclassical Equations of Mathematical Physics and their Applications, International Scientific Conference (Tashkent, 6–8 October 2022), National Univ. of Uzbekistan, Tashkent, 2022, 186–187
[30] Erdélyi A. Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, Bateman Manuscript Project, McGraw-Hill Book Co., New York, Toronto, London, 1953, xvii+396 pp. | Zbl
[31] Naimark M. A., Lineinye differentsial'nye operatory [Linear Differential Operators], Nauka, Moscow, 1969, 528 pp. (In Russian) | Zbl
[32] Mikhlin S. G., Lektsii po lineinym integral'nym uravneniiam [Lectures on Linear Integral Equations], Fizmatgiz, Moscow, 1959, 232 pp. (In Russian)
[33] Watson G. N., A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 1995, vi+804 pp. | Zbl