Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_3_a6, author = {D. V. Chapliy and L. V. Stepanova and O. N. Belova}, title = {Parametric analysis of the stress-strain and continuity fields}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {509--529}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a6/} }
TY - JOUR AU - D. V. Chapliy AU - L. V. Stepanova AU - O. N. Belova TI - Parametric analysis of the stress-strain and continuity fields JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 509 EP - 529 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a6/ LA - ru ID - VSGTU_2023_27_3_a6 ER -
%0 Journal Article %A D. V. Chapliy %A L. V. Stepanova %A O. N. Belova %T Parametric analysis of the stress-strain and continuity fields %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 509-529 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a6/ %G ru %F VSGTU_2023_27_3_a6
D. V. Chapliy; L. V. Stepanova; O. N. Belova. Parametric analysis of the stress-strain and continuity fields. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 3, pp. 509-529. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a6/
[1] Kachanov L. M., “Time of the rupture process under creep conditions”, Izv. Akad. Nauk. SSSR, Otd. Tekhn. Nauk, 1958, no. 8, 26–31 (In Russian)
[2] Rabotnov Yu. N., “On a mechanism of delayed failure”, Voprosy prochnosti materialov i konstruktsii [Questions of Strength of Materials and Construction], USSR Academy of Sci., Moscow, 1959, 5–7 (In Russian)
[3] Kachanov L. M., Teoriia plastichnosti [Creep Theory], Fizmatlit, Moscow, 1960, 455 pp. (In Russian)
[4] Rabotnov Yu. N., Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics, North-Holland Publ., Amsterdam, London, 1969, ix+822 pp.
[5] Lokoshchenko A. M., Fomin L. V., Teraud W. V., et al., “Creep and long-term strength of metals under unsteady complex stress states (Review)”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 275–318 (In Russian) | DOI
[6] Meng Q., Zhenqing H., “Creep damage models and their applications for crack growth analysis in pipes: A review”, Eng. Fract. Mech., 205 (2019), 547–576 | DOI
[7] Meng L., Chen W., Yan Y., et al., “Modelling of creep and plasticity deformation considering creep damage and kinematic hardening”, Eng. Fract. Mech., 218 (2019), 106582 | DOI
[8] Murakami S., Continuum Damage Mechanics. A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer, Dordrecht, 2012, xxx+402 pp. | DOI
[9] Riedel H., Fracture at High Temperatures, Springer-Verlag, Berlin, Heidelberg, 1987, 418 pp.
[10] Wen J.-F., Tu S.-T., Gao X.-L., Reddy J. N., “Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model”, Eng. Fract. Mech., 98 (2012), 169–184 | DOI
[11] Rabotnov Yu. N., Vvedenie v mekhaniku razrusheniia [Introduction to the Mechanics of Destruction], Nauka, Moscow, 1987, 80 pp.
[12] Boyle J. T., Spence J., Stress Analysis for Creep, Butterworth-Heinemann, Glasgow, Scotland, 1983, viii+283 pp. | DOI
[13] Shlyannikov V. N., Tumanov A. V., “Force and deformation models of damage and fracture during creep”, Phys. Mesomech., 21:3 (2018), 70–85 (In Russian) | DOI
[14] Shlyannikov V. N., Tumanov A. V., “Creep damage and stress intensity factor assessment for plane multi-axial and three-dimensional problems”, Int. J. Solids Structures, 150 (2018), 166–183 | DOI
[15] Stepanova L. V., “Computational simulation of the damage accumulation processes in cracked solids by the user procedure UMAT of Simulia Abaqus.”, PNRPU Mechanics Bulletin, 2018, no. 3, 71–86 (In Russian) | DOI
[16] Astaf'ev V. I., Radaev Iu. N., Stepanova L. V., Nelineinaia mekhanika razrusheniia [Nonlinear Fracture Mecahics], Samara Univ., Samara, 2001, 632 pp. (In Russian)
[17] Wu Y., Li G., Tan F., et al., “Research on creep damage model of high alumina bricks”, Ceramics Int., 48:19, Part A (2022), 27758–27764 | DOI
[18] Stewart C. M., A Hybrid Constitutive Model for Creep, Fatigue, and Creep-Fatigue Damage, Ph.D. Dissertation, University of Central Florida, Orlando, Florida, 2013 https://stars.library.ucf.edu/etd/2789/
[19] Liu L. Y., Murakami S., “Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis”, Eng. Fract. Mech., 41:1 (1998), 57–65 | DOI
[20] Vanaja J., Laha K., Mathew M. D., “Effect of tungsten on primary creep deformation and minimum creep rate of reduced activation ferritic-martensitic steel”, Metall. Mater. Trans. A, 45:11 (2014), 5076–5084 | DOI
[21] Ro U., Kim S., Kim Y., Kim M. K., “Creep-fatigue damage analysis of modified 9Cr–1Mo steel based on a Voronoi crystalline model”, Int. J. Pressure Vessels Piping, 194, Part B (2021), 104541 | DOI
[22] Dyson B., “Use of CDM in materials modeling and component creep life prediction”, J. Pressure Vessel Technol., 122:3 (2000), 281–296 | DOI
[23] Abdel Wahab M. M., Ashcroft I. A., Crocombe A. D., Shaw S. J., “Prediction of fatigue thresholds in adhesively bonded joints using damage mechanics and fracture mechanics”, J. Adh. Sci. Techn., 15:7 (2001), 763–781 | DOI
[24] He Q., Wu F., Gao R., “Nonlinear creep-damage constitutive model of surrounding rock in salt cavern reservoir”, J. Energy Storage, 55, Part B (2022), 105520 | DOI
[25] Dummer A., Neuner M., Hofstetter G., “An extended gradient-enhanced damage-plasticity model for concrete considering nonlinear creep and failure due to creep”, Int. J. Solids Struct., 243 (2022), 111541 | DOI
[26] Belova O. N., Chapliy D. V., Stepanova L. V., “Application of the UMAT subroutine for solving continuum mechanics problems (Review)”, Vestn. Samar. Univ., Estestvennonauchn. Ser., 27:3 (2021), 46–73 (In Russian) | DOI
[27] Ilin V. N., Mordashov S. V., Pusach S.V., “Laws of creep for computation of fire resisance for steel equipment”, Technology of Technosphere Safety, 2008, no. 6, 10 (In Russian)