Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_3_a3, author = {V. N. Hakobyan and H. Amirjanyan and L. L. Dashtoyan and A. V. Sahakyan}, title = {Elastic compound plane with an interfacial absolutely rigid thin inclusion partially detached form the matrix subject to slippage at the ends}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {462--475}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a3/} }
TY - JOUR AU - V. N. Hakobyan AU - H. Amirjanyan AU - L. L. Dashtoyan AU - A. V. Sahakyan TI - Elastic compound plane with an interfacial absolutely rigid thin inclusion partially detached form the matrix subject to slippage at the ends JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 462 EP - 475 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a3/ LA - ru ID - VSGTU_2023_27_3_a3 ER -
%0 Journal Article %A V. N. Hakobyan %A H. Amirjanyan %A L. L. Dashtoyan %A A. V. Sahakyan %T Elastic compound plane with an interfacial absolutely rigid thin inclusion partially detached form the matrix subject to slippage at the ends %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 462-475 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a3/ %G ru %F VSGTU_2023_27_3_a3
V. N. Hakobyan; H. Amirjanyan; L. L. Dashtoyan; A. V. Sahakyan. Elastic compound plane with an interfacial absolutely rigid thin inclusion partially detached form the matrix subject to slippage at the ends. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 3, pp. 462-475. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a3/
[1] Galin L. A., Nauka, Moscow, 1980, 304 pp. (In Russian) | Zbl
[2] Popov G. Ya., Kontsentratsiia uprugikh napriazhenii vozle shtampov, razrezov, tonkikh vkliuchenii i podkreplenii [Concentration of Elastic Stress around Stamps, Cuts, Thin Inclusions, and Reinforcements], Nauka, Moscow, 1982, 344 pp. (In Russian)
[3] Panasyuk V. V., Savruk M. P., Datsyshin A. P., Raspredelenie napriazhenii okolo treshchin v plastinakh i obolochkakh [Stress Distribution Around Cracks in Plates and Shells], Naukova Dumka, Kiev, 1976, 443 pp. (In Russian)
[4] Muskhelishvili N. I., Some Basic Problems of the Mathematical Theory of Elasticity, Springer, Netherlands, 1977, xxxi+732 pp. | DOI
[5] Berezhnitskii L. T., Panasyuk V. V., Stashchuk N. G., Vzaimodeistvie zhestkikh lineinykh vkliuchenii i treshchin v deformiruemom tele [The Interaction of Rigid Linear Inclusions and Cracks in a Deformable Body], Naukova Dumka, Kiev, 1983, 288 pp. (In Russian)
[6] Hakobyan V. N., Stress Concentrators in Continuous Deformable Bodies, Advanced Structured Materials, 181, Springer, Cham, 2022, xx+380 pp. | DOI
[7] Hakobyan V. N., Hakobyan L. V. Dashtoyan L. L., “Contact problem for a piecewise-homogeneous plane with an interfacial crack under dry friction”, J. Phys.: Conf. Ser., 2231 (2022), 012024 | DOI
[8] Il'ina I. I., Sil'vestrov V. V., “The problem of a thin interfacial inclusion detached from the medium along one side”, Mech. Solids., 40:3 (2005), 123–133
[9] Galin L. A., “Indentation of a punch in the presence of friction and adhesion”, Prikl. Mat. Mekh. [J. Appl. Math. Mech.], 9:5 (1945), 413–424 | Zbl
[10] Mossakovskii V. I., Biskup A. G., “Impression of a stamp with friction and adhesion present”, Sov. Phys., Dokl, 17:10 (1972), 984–986 | Zbl
[11] Antipov Yu. A., Arutyunyan N. Kh., “Contact problems of the theory of elasticity with friction and adhesion”, J. Appl. Math. Mech., 55:6 (1991), 887–901 | DOI
[12] Wayne Chen W., Jane Wang Q., “A numerical model for the point contact of dissimilar materials considering tangential tractions”, Mech. Mater., 40:11 (2008), 936–948 | DOI
[13] Ostrik V. I., “Indentation of a punch into an elastic strip with friction and adhesion”, Mech. Solids, 46:5 (2011), 755–765 | DOI
[14] Sahakyan A. V., “Solution of a contact problem with contact and adhesion regions (Galin's problem) by the method of discrete singularities”, Razvitie idei L. A. Galina v mekhanike [Development of L. A. Galin's Ideas in Mechanics. Collection of Research Papers], Moscow, Izhevsk, 2013, 103–120 (In Russian)
[15] Krotov S. V., Kononov D. P., Pakulina E. V., “Stress state in contact between wheel and rail in the presence of slip and adhesion”, Proceedings of Petersburg Transport University, 18:2 (2021), 177–187 (In Russian) | DOI
[16] Hakobyan V. N., Amirjanyan H. A., Dashtoyan L. L., Sahakyan A. V., “Indentation of an absolutely rigid thin inclusion into one of the crack faces in an elastic plane under slippage at the ends”, H. Altenbach, S. M. Bauer, A. K. Belyaev, et al. (eds) Advances in Solid and Fracture Mechanics, Advanced Structured Materials, 180, Springer, Cham, 2022, 85–96 | DOI
[17] Sahakyan A. V., Amirjanyan H. A., “Method of mechanical quadratures for solving singular integral equations of various types”, J. Phys.: Conf. Ser., 991 (2018), 012070 | DOI
[18] Muskhelishvili N. I., Singuliarnye integral'nye uravneniia. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniia k matematicheskoi fizike [Singular Integral Equations. Boundary Value Problems in the Theory of Functions and Some Applications of them to Mathematical Physics], Nauka, Moscow, 1968, 510 pp. (In Russian)
[19] Dundurs J., “Discussion: “Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading” (Bogy, D. B., 1968, ASME J. Appl. Mech., 35, pp. 460–466)”, J. Appl. Mech., 36:3 (1969), 650–652 | DOI