Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_3_a2, author = {Kh. A. Khachatryan and H. S. Petrosyan}, title = {On the solvability of a class of nonlinear two-dimensional integral equations {Hammerstein--Nemytskii} type on the plane}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {446--461}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a2/} }
TY - JOUR AU - Kh. A. Khachatryan AU - H. S. Petrosyan TI - On the solvability of a class of nonlinear two-dimensional integral equations Hammerstein--Nemytskii type on the plane JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 446 EP - 461 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a2/ LA - ru ID - VSGTU_2023_27_3_a2 ER -
%0 Journal Article %A Kh. A. Khachatryan %A H. S. Petrosyan %T On the solvability of a class of nonlinear two-dimensional integral equations Hammerstein--Nemytskii type on the plane %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 446-461 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a2/ %G ru %F VSGTU_2023_27_3_a2
Kh. A. Khachatryan; H. S. Petrosyan. On the solvability of a class of nonlinear two-dimensional integral equations Hammerstein--Nemytskii type on the plane. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 3, pp. 446-461. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a2/
[1] Volovich I. V., “$p$-adic string”, Class. Quantum Grav., 4:4 (1987), L83–L87 | DOI
[2] Moeller N., Schnabl M., “Tachyon condensation in open-closed $p$-adic string theory”, J. High Energ. Phys., 2004:01 (2004), 011, arXiv: hep-th/0304213 | DOI
[3] Vladimirov V. S., “Nonlinear equations for $p$-adic open, closed, and open-closed strings”, Theoret. and Math. Phys., 149:3 (2006), 1604–1616 | DOI | DOI | MR | Zbl
[4] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biology, 6:2 (1978), 109–130 | DOI
[5] Diekmann O., Kaper H. G., “On the bounded solutions of a nonlinear convolution equation”, Nonlinear Anal., Theory Methods Appl., 2:6 (1978), 721–737 | DOI | Zbl
[6] Cercignani C., The Boltzmann Equation and Applications, Applied Mathematical Sciences, 67, Springer, New York, 1988, 455 pp. | DOI
[7] Aref'eva I. Ya., Volovich I. V., “Cosmological daemon”, J. High Energ. Phys., 2011:8 (2011), 102, arXiv: [hep-th] 1103.0273 | DOI
[8] Khachatryan Kh. A., Petrosyan H. S., Avetisyan M. H., “Solvability issues for a class of convolution type nonlinear integral equations in $\mathbb {R}^n$”, Trudy Inst. Mat. Mekh. UrO RAN, 24:3 (2018), 247–262 (In Russian) | DOI
[9] Khachatryan Kh. A., Petrosyan H. S., “Alternating bounded solutions of a class of nonlinear two-dimensional convolution-type integral equations”, Trans. Moscow Math. Soc., 82 (2021), 259–271 | DOI
[10] Khachatryan Kh. A., Petrosyan H. S., “On the construction of an integrable solution to one class of nonlinear integral equations of Hammerstein–Nemytskii type on the whole axis”, Trudy Inst. Mat. Mekh. UrO RAN, 26:2 (2020), 278–287 (In Russian) | DOI
[11] Khachatryan A. Kh., Khachatryan Kh. A., “Hammerstein–Nemytskii type nonlinear integral equations on half-line in space $L_1(0,+\infty)\cap L_\infty(0,+\infty)$”, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math., 52:1 (2013), 89–100 | Zbl
[12] Khachatryan A. Kh., Khachatryan Kh. A., Petrosyan H. S., “On positive bounded solutions of one class of nonlinear integral equations with the Hammerstein–Nemytskii operator”, Differ. Equat., 57:6 (2021), 768–779 | DOI | DOI
[13] Arabadzhyan L. G., “Existence of nontrivial solutions of certain linear and nonlinear convolution-type equations”, Ukr. Math. J., 41:12 (1989), 1359-1367 | DOI | Zbl | Zbl
[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsional'nogo analiza Elements of the Theory of Functions and Functional Analysis, Nauka, Moscow, 1981, 542 pp. (In Russian)
[15] Arabadzhyan L. G., Khachatryan A. S., “A class of integral equations of convolution type”, Sb. Math., 198:7 (2007), 949–966 | DOI | DOI | MR | Zbl