Description of the spectrum of one fourth-order operator matrix
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 3, pp. 427-445.

Voir la notice de l'article provenant de la source Math-Net.Ru

An operator matrix ${\cal A}$ of fourth-order is considered. This operator corresponds to the Hamiltonian of a system with non conserved number and at most four particles on a lattice. It is shown that the operator matrix ${\cal A}$ is unitarily equivalent to the diagonal matrix, the diagonal elements of which are operator matrices of fourth-order. The location of the essential spectrum of the operator ${\cal A}$ is described, that is, two-particle, three-particle and four-particle branches of the essential spectrum of the operator ${\cal A}$ are singled out. It is established that the essential spectrum of the operator matrix ${\cal A}$ consists of the union of closed intervals whose number is not over 14. A Fredholm determinant is constructed such that its set of zeros and the discrete spectrum of the operator matrix ${\cal A}$ coincide, moreover, it was shown that the number of simple eigenvalues of the operator matrix ${\cal A}$ lying outside the essential spectrum does not exceed 16.
Keywords: Fock space, operator matrix, annihilation and creation operators, unitary equivalent operators, essential, discrete and point spectra.
@article{VSGTU_2023_27_3_a1,
     author = {T. H. Rasulov and H. M. Latipov},
     title = {Description of the spectrum of one fourth-order operator matrix},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {427--445},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a1/}
}
TY  - JOUR
AU  - T. H. Rasulov
AU  - H. M. Latipov
TI  - Description of the spectrum of one fourth-order operator matrix
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 427
EP  - 445
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a1/
LA  - ru
ID  - VSGTU_2023_27_3_a1
ER  - 
%0 Journal Article
%A T. H. Rasulov
%A H. M. Latipov
%T Description of the spectrum of one fourth-order operator matrix
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 427-445
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a1/
%G ru
%F VSGTU_2023_27_3_a1
T. H. Rasulov; H. M. Latipov. Description of the spectrum of one fourth-order operator matrix. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 3, pp. 427-445. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a1/

[1] Tretter C., Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008, xxxi+264 pp. | Zbl

[2] Mogilner A. I., “Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: Problems and results”, Many particle Hamiltonians: Spectra and Scattering, Advances in Soviet Mathematics, 5, Am. Math. Soc., Providence, RI, 1991, 139–194 | Zbl

[3] Friedrichs K. O., Perturbation of Spectra in Hilbert Space, Lectures in Applied Mathematics, 3, Am. Math. Soc., Providence, RI, 1965, xii+178 pp. | Zbl

[4] Malyshev V. A., Minlos R. A., Linear Infinite-Particle Operators, Translations of Mathematical Monographs, 143, Am. Math. Soc., Providence, RI, 1995, viii+298 pp. | Zbl | Zbl

[5] Thaller B., The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1991, xvii+357 pp. | Zbl

[6] Lifschitz A. E., Magnetohydrodynamics and Spectral Theory, Developments in Electromagnetic Theory and Applications, 4, Dordrecht, Kluwer Academic Publ., 1989, xii+446 pp. | Zbl

[7] Faddeev L. D., Merkuriev S. P., Quantum Scattering Theory for Several Particle Systems, Mathematical Physics and Applied Mathematics, 11, Dordrecht, 1993, xiii+404 pp. | Zbl | Zbl

[8] Cycon H. L., Froese R. G., Kirsch W., Simon B., Schrödinger Operators, with Application to Quantum Mechanics and Global Geometry, Springer Study edition. Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987, ix+319 pp. | Zbl

[9] Hunziker W., “On the spectra of Schrödinger multiparticle Hamiltonians”, Helv. Phys. Acta, 39 (1966), 451–462 | Zbl

[10] van Winter C., Theory of Finite Systems of Particles. I: The Green Function, Mat.-Fys. Skr., Danske Vid. Selsk. 2, No. 8, 1964, 60 pp. | Zbl

[11] Zhislin G. M., “A study of the spectrum of the Schrödinger operator for a system of several particles”, Tr. Mosk. Mat. Obs., 9, 1960, 81–120 (In Russian) | MR | Zbl

[12] Muminov M. É., “A Hunziker–van Winter–Zhislin theorem for a four-particle lattice Schrödinger operator”, Theoret. and Math. Phys., 148:3 (2006), 1236–1250 | DOI | DOI | MR | Zbl

[13] Lakaev S. N., Rasulov T. K., “A model in the theory of perturbations of the essential spectrum of multiparticle operators”, Math. Notes, 73:4 (2003), 521–528 | DOI | DOI | MR | Zbl

[14] Albeverio S., Lakaev S. N., Rasulov T. H., “On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics”, J. Stat. Phys., 127:2 (2007), 191–220, arXiv: math-ph/0508028 | DOI

[15] Rasulov T. K., “On the structure of the essential spectrum of a model many-body Hamiltonian”, Math. Notes, 83:1 (2008), 80–87 | DOI | DOI | MR | Zbl

[16] Rasulov T. H., Muminov M. E., Hasanov M., “On the spectrum of a model operator in Fock space”, Methods Funct. Anal. Topol., 15:4 (2009), 369–383, arXiv: [math-ph] 0805.1284 | Zbl

[17] Rasulov T. H., “Investigations of the essential spectrum of a Hamiltonian in Fock space”, Appl. Math. Inform. Sci., 4:3 (2010), 395–412

[18] Muminov M., Neidhardt H., Rasulov T., “On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case”, J. Math. Phys., 56 (2015), 053507, arXiv: [math-ph] 1410.4763 | DOI

[19] Rasulov T. K., “Branches of the essential spectrum of the lattice spin-boson model with at most two photons”, Theoret. and Math. Phys., 186:2 (2016), 251–267 | DOI | DOI | MR

[20] Spohn H., “Ground state(s) of the spin-boson hamiltonian”, Commun. Math. Phys., 123:2 (1989), 277–304 | DOI

[21] Hübner M., Spohn H., “Spectral properties of the spin-boson Hamiltonian”, Ann. Inst. Henri Poincaré, Phys. Théor., 62:3 (1995), 289–323 | Zbl

[22] Zhukov Yu. V., Minlos R. A., “Spectrum and scattering in a “spin-boson” model with not more than three photons”, Theoret. and Math. Phys., 103:1 (1995), 398–411 | DOI | MR | Zbl

[23] Minlos R. A., Spohn H., “The three-body problem in radioactive decay: The case of one atom and at most two photons”, Topics in Statistical and Theoretical Physics, American Mathematical Society Translations, Ser. 2, 177, Am. Math. Soc., Providence, RI, 1996, 159–193 | DOI | Zbl

[24] Feynman R. P., Statistical Mechanics. A Set of Lectures, Advanced Book Classics, Perseus Books, Reading, MA, 1998, xiv+354 pp. | Zbl

[25] Reed M., Simon B., Methods of Modern Mathematical Physics, v. 4, Analysis of Operators, Academic Press, New York, 1978, xv+396 pp. | Zbl

[26] Gohberg I. C., Kreǐn M. G., Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Translations of Mathematical Monographs, 18, Am. Math. Soc., Providence, RI, 1969, xv+378 pp. | DOI