Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_3_a0, author = {Z. V. Beshtokova}, title = {Stability and convergence of the locally one-dimensional scheme {A.~A.~Samarskii,}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {407--426}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a0/} }
TY - JOUR AU - Z. V. Beshtokova TI - Stability and convergence of the locally one-dimensional scheme A.~A.~Samarskii, JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 407 EP - 426 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a0/ LA - ru ID - VSGTU_2023_27_3_a0 ER -
%0 Journal Article %A Z. V. Beshtokova %T Stability and convergence of the locally one-dimensional scheme A.~A.~Samarskii, %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 407-426 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a0/ %G ru %F VSGTU_2023_27_3_a0
Z. V. Beshtokova. Stability and convergence of the locally one-dimensional scheme A.~A.~Samarskii,. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 3, pp. 407-426. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a0/
[1] Samarskii A. A., Vabishchevich P. N., Chislennye metody resheniia zadach konvektsii-diffuzii [Numerical Methods for Solving Convection-Diffusion Problems], Editorial URSS, Moscow, 2015, 246 pp. (In Russian)
[2] Douglas J., Rachford H. H., “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Amer. Math. Soc., 82:2 (1956), 421–439 | DOI | Zbl
[3] Peaceman D. W., Rachford H. H., “The numerical solution of parabolic and elliptic differential equations”, J. Soc. Indust. Appl. Math., 3:1 (1955), 28–41 | DOI | Zbl
[4] Yanenko N. N., Metod drobnykh shagov resheniia mnogomernykh zadach matematicheskoi fiziki [The Method of Fractional Steps for Solving Multidimensional Problems in Mathematical Physics], Novosibirsk, Nauka. Sibirsk. Otdel., 1967, 196 pp. (In Russian) | Zbl
[5] Samarskii A. A., “On an economical difference method for the solution of a multidimensional parabolic equation in an arbitrary region”, USSR Comput. Math. Math. Phys., 2:5 (1963), 894–926 | DOI | MR | Zbl
[6] Samarskii A. A., “Local one dimensional difference schemes on non-uniform nets”, USSR Comput. Math. Math. Phys., 3:3 (1963), 572–619 | DOI | MR | Zbl
[7] Marchuk G. I., Metody rasshchepleniia [Decomposition Methods], Nauka, Moscow, 1988, 264 pp. (In Russian) | Zbl
[8] D'yakonov E. G., “Difference schemes with a splitting operator for nonstationary equations”, Dokl. Sov. Math., 3:1 (1962), 645–648 | MR | Zbl
[9] Fryazinov I. V., “Difference approximation of the boundary conditions for the third boundary value problem”, USSR Comput. Math. Math. Phys., 4:6 (1964), 180–188 | DOI | MR | Zbl
[10] Fryazinov I. V., “Economic schemes for increasing the order of accuracy when solving multidimensional parabolic equations”, USSR Comput. Math. Math. Phys., 9:6 (1969), 104–117 | DOI | MR | Zbl
[11] Fryazinov I. V., “Economic schemes for the equation of heat conduction with a boundary condition of the third kind”, USSR Comput. Math. Math. Phys., 12:3 (1972), 53–70 | DOI | MR | Zbl
[12] Nakhusheva F. M., Vodakhova V. A., Kudaeva F. Kh., Abaeva Z. V., “Locally-one-dimensional difference scheme for the fractional-order diffusion equation with lumped heat capacity”, Modern Problems of Science and Education, 2015, no. 2, 763 (In Russian)
[13] Beshtokova Z. V., Shkhanukov–Lafishev M. Kh., “Locally one-dimensional difference scheme for the third boundary value problem for a parabolic equation of the general form with a nonlocal source”, Differ. Equat., 54:7 (2018), 870–880 | DOI | DOI | Zbl
[14] Beshtokova Z. V., “Locally one-dimensional difference scheme for a nonlocal boundary value problem for a parabolic equation in a multidimensional domain”, Differ. Equat., 56:3 (2020), 354–368 | DOI | DOI | Zbl
[15] Beshtokova Z. V., “Numerical method for solving an initial-boundary value problem for a multidimensional loaded parabolic equation of a general form with conditions of the third kind”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:1 (2022), 7–35 (In Russian) | DOI | MR | Zbl
[16] Samarskii A. A., Teoriia raznostnykh skhem [Theory of Difference Schemes], Nauka, Moscow, 1983, 616 pp. (In Russian)
[17] Samarskii A. A., Gulin A. B., Ustoichivost' raznostnykh skhem [Stability of Difference Schemes], Nauka, Moscow, 1973, 415 pp. (In Russian)