Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_2_a8, author = {A. A. Rogalev}, title = {The estimation of solutions sets of~linear systems of~ordinary differential equations with perturbations based on~the {Cauchy} operator}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {357--374}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a8/} }
TY - JOUR AU - A. A. Rogalev TI - The estimation of solutions sets of~linear systems of~ordinary differential equations with perturbations based on~the Cauchy operator JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 357 EP - 374 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a8/ LA - ru ID - VSGTU_2023_27_2_a8 ER -
%0 Journal Article %A A. A. Rogalev %T The estimation of solutions sets of~linear systems of~ordinary differential equations with perturbations based on~the Cauchy operator %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 357-374 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a8/ %G ru %F VSGTU_2023_27_2_a8
A. A. Rogalev. The estimation of solutions sets of~linear systems of~ordinary differential equations with perturbations based on~the Cauchy operator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 357-374. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a8/
[1] Abgaryan K. A., “On the stability of motion within a finite interval of time”, Sov. Math., Dokl., 9:3 (1968), 1110–1112 | MR | Zbl
[2] Abgaryan K. A., Vvedenie v teoriiu ustoichivosti dvizheniia na konechnom intervale vremeni [Introduction to the Theory of Stability of Motion over a Finite Time Interval], Nauka, Moscow, 1991, 160 pp. (In Russian) | Zbl
[3] Polyak B. T., Khlebnikov M. V., Shcherbakov P. S., “Linear matrix inequalities in control systems with uncertainty”, Autom. Remote Control, 82:1 (2021), 1–40 | DOI | DOI | Zbl
[4] Kurzhansky A. B., Upravlenie i nabliudenie v usloviiakh neopredelennosti [Management and Supervision in Conditions of Uncertainty], Nauka, Moscow, 1977, 392 pp. (In Russian)
[5] Kurzhansky A. B., Filippova T. F., “On a description of the bundle of surviving trajectories of a control system”, Differ. Uravn., 23:8 (1987), 1303–1315 (In Russian) | MR | Zbl
[6] Chernous'ko F. L., Otsenivanie fazovogo sostoianiia dinamicheskikh sistem. Metod ellipsoidov [Estimation of the Phase State of Dynamic Systems. Ellipsoid Method], Nauka, Moscow, 1988, 320 pp. (In Russian)
[7] Chernous'ko F. L., “Ellipsoidal approximation of the attainability sets of a linear system with an uncertain matrix”, J. Appl. Math. Mech., 60:6 (1996), 921–931 | DOI | Zbl
[8] Kurzhanski A. B., Mesyats A. I., “Control of ellipsoidal trajectories: Theory and numerical results”, Comput. Math. Math. Phys., 54:3 (2014), 418–428 | DOI | DOI | Zbl
[9] Chernous'ko F. L., “Optimal ellipsoidal estimates of control and uncertain systems (survey)”, Applied and Computational Mathematics, 8:2 (2009), 135–151
[10] Ushakov V. N., Ershov A. A., “Reachable sets and integral funnels of differential inclusions depending on a parameter”, Dokl. Math., 104:1 (2021), 200–204 | DOI | DOI | Zbl
[11] Ushakov V. N., Ershov A. A., Ushakov A. V., “Control systems depending on a parameter: Reachable sets and integral funnels”, Mech. Solids, 57:7 (2022), 1672–1688 | DOI | DOI | Zbl
[12] Aubin J.-P., Frankowska H., “The value does not exist! A motivation for extremal analysis”, Probab. Uncertain. Quant. Risk, 7:3 (2022), 195–214 | DOI
[13] Althoff M., Frehse G., Girard A., “Set propagation techniques for reachability analysis”, Annu. Rev. Control Robot. Auton. Syst., 4 (2021), 369–395 | DOI
[14] Villegas Pico H. N., Alipantis D. C., “Reachability analysis of linear dynamic systems with constant, arbitrary, and Lipschitz continuous inputs”, Automatica, 95 (2018), 293–305 | DOI | Zbl
[15] Morozov A. Yu., Reviznikov D. L., “Adaptive interpolation algorithm on sparse meshes for numerical integration of systems of ordinary differential equations with interval uncertainties”, Differ. Equ., 57:7 (2021), 947–958 | DOI | DOI | Zbl
[16] Gidaspov V. Yu., Morozov A. Yu., Reviznikov D. L., “Adaptive interpolation algorithm using TT-decomposition for modeling dynamical systems with interval parameters”, Comput. Math. Math. Phys., 61:9 (2021), 1387–1400 | DOI | DOI | Zbl
[17] Morozov A. Yu., Reviznikov D. L., “Interval approach to solving parametric identification problems for dynamical systems”, Differ. Equ., 58:7 (2022), 952–965 | DOI | DOI | Zbl
[18] Novikov V. A., Rogalev A. N., “Construction of convergent upper and lower bounds of solutions of systems of ordinary differential equations with interval initial data”, Comput. Math. Math. Phys., 33:2 (1993), 193–203 | MR | Zbl
[19] Rogalev A. N., Rogalev A. A., “Numerical estimates of the maximum deviations of aircraft in the atmosphere”, Vestn. SibGAU, 16:1 (2016), 104–112 (In Russian)
[20] Rogalev A. A., “Algorithms for symbolic calculations based on root trees for assessing management capabilities”, Siberian Journal of Science and Technology, 18:4 (2017), 810–819 (In Russian)
[21] Rogalev A. N., Rogalev A. A., Feodorova N. A., “Numerical computations of the safe boundaries of complex technical systems and practical stability”, J. Phys.: Conf. Ser., 1399 (2019), 033112 | DOI
[22] Rogalev A. N., Rogalev A. A., Feodorova N. A., “Malfunction analysis and safety of mathematical models of technical systems”, J. Phys.: Conf. Ser., 1515 (2020), 022064 | DOI
[23] Rogalev A. N., “Regularization of inclusions of differential equations solutions based on the kinematics of a vector field in stability problems”, J. Phys.: Conf. Ser., 2099 (2021), 012045 | DOI
[24] Smirnov A. V., “The bilinear complexity and practical algorithms for matrix multiplication”, Comput. Math. Math. Phys., 53:12 (2013), 1781–1795 | DOI | DOI | MR | Zbl
[25] Abramov S. A., Ryabenko A. A., Khmelnov D. E., “Regular solutions of linear ordinary differential equations and truncated series”, Comput. Math. Math. Phys., 60:1 (2020), 1–14 | DOI | DOI | Zbl
[26] Galeev E. M., Optimizatsiia: teoriia, primery, zadachi [Optimization: Theory, Examples, Tasks], URSS, Moscow, 2002, 304 pp. (In Russian)
[27] Ahlberg J. H., Nilson E. N., Walsh J. L., The Theory of Splines and their Applications, Mathematics in Science and Engineering, Academic Press, New York, 1967, xi+284 pp. | DOI | Zbl
[28] Tolpegin I. G., “Differential-game methods for targeting missiles at high-speed maneuvering targets”, Izv. RARAN, 2003, no. 1, 80–86 (In Russian)