Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_2_a6, author = {K. S. Kolegov}, title = {Suppression of sawtooth oscillations when using a~finite-difference scheme for mass transport simulation in a~drying droplet on a~substrate in the thin layer approximation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {309--335}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a6/} }
TY - JOUR AU - K. S. Kolegov TI - Suppression of sawtooth oscillations when using a~finite-difference scheme for mass transport simulation in a~drying droplet on a~substrate in the thin layer approximation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 309 EP - 335 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a6/ LA - ru ID - VSGTU_2023_27_2_a6 ER -
%0 Journal Article %A K. S. Kolegov %T Suppression of sawtooth oscillations when using a~finite-difference scheme for mass transport simulation in a~drying droplet on a~substrate in the thin layer approximation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 309-335 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a6/ %G ru %F VSGTU_2023_27_2_a6
K. S. Kolegov. Suppression of sawtooth oscillations when using a~finite-difference scheme for mass transport simulation in a~drying droplet on a~substrate in the thin layer approximation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 309-335. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a6/
[1] Zang D., Tarafdar S., Tarasevich Yu. Yu., et al., “Evaporation of a droplet: From physics to applications”, Phys. Rep., 804 (2019), 1–56 | DOI
[2] Kolegov K. S., Barash L. Yu., “Applying droplets and films in evaporative lithography”, Adv. Colloid Interf. Sci., 285 (2020), 102271 | DOI
[3] Deegan R. D., Bakajin O., Dupont T F., et al., “Capillary flow as the cause of ring stains from dried liquid drops”, Nature, 389:6653 (1997), 827–829 | DOI
[4] Kim H., Yang J., Kim S., et al., “Numerical simulation of the coffee-ring effect inside containers with time-dependent evaporation rate”, Theor. Comput. Fluid Dyn., 36:3 (2022), 423–433 | DOI
[5] Baba H., Yoshioka R., Takatori S., et al., “Transitions among cracking, peeling and homogenization on drying of an aqueous solution containing glucose and starch”, Chem. Let., 50:5 (2021), 1011–1014 | DOI
[6] Wang W., Wang Q., Zhang K., et al., “On-demand contact line pinning during droplet evaporation”, Sens. Act. B: Chem., 312 (2020), 127983 | DOI
[7] Saroj S. K., Panigrahi P. K., “Magnetophoretic control of diamagnetic particles inside an evaporating droplet”, Langmuir, 37:51 (2021), 14950–14967 | DOI
[8] Al-Muzaiqer M. A., Kolegov K. S., Ivanova N. A., Fliagin V. M., “Nonuniform heating of a substrate in evaporative lithography”, Phys. Fluids, 33:9 (2021), 092101 | DOI
[9] Du F., Zhang L., Shen W., “Controllable dried patterns of colloidal drops”, J. Col. Int. Sci., 606 (2022), 758–767 | DOI
[10] Cedeno R., Grossier R., Lagaize M., et al., “Nucleation in sessile saline microdroplets: Induction time measurement via deliquescence-recrystallization cycling”, Faraday Discuss., 235 (2022), 183–197 | DOI
[11] Perkins-Howard B., Walker A. R., Do Q., et al., “Surface wettability drives the crystalline surface assembly of monodisperse spheres in evaporative colloidal lithography”, J. Phys. Chem. C, 126:1 (2022), 505–516 | DOI
[12] Jose M., Mayarani M., Basavaraj M. G., Satapathy D. K., “Evaporative self-assembly of the binary mixture of soft colloids”, Phys. Chem. Chem. Phys., 23:12 (2021), 7115–7124 | DOI
[13] Zolotarev P. A., Kolegov K. S., “Monte Carlo simulation of particle size separation in evaporating bi-dispersed colloidal droplets on hydrophilic substrates”, Phys. Fluids, 34:1 (2022), 017107 | DOI
[14] Kirner F., Sturm E. V., “Advances of nonclassical crystallization toward self-purification of precious metal nanoparticle mixtures”, Cryst. Growth Des., 21:9 (2021), 5192–5197 | DOI
[15] Hossain M. T., Gates I. D., Natale G., “Dynamics of Brownian Janus rods at a liquid-liquid interface”, Phys. Fluids, 34:1 (2022), 012117 | DOI
[16] Mustakim M., Anil Kumar A. V., “Depletion induced demixing and crystallization in binary colloids subjected to an external potential barrier”, J. Phys. Chem. B, 126:1 (2021), 327–335 | DOI
[17] Nozawa J., Uda S., Toyotama A., et al., “Heteroepitaxial fabrication of binary colloidal crystals by a balance of interparticle interaction and lattice spacing”, J. Col. Int. Sci., 608 (2022), 873–881 | DOI
[18] Galy P. E., Guitton-Spassky T., Sella C., et al., “Redox control of particle deposition from drying drops”, ACS Appl. Mater. Interfaces, 14:2 (2022), 3374–3384 | DOI
[19] Inoue K., Inasawa S., “Drying-induced back flow of colloidal suspensions confined in thin unidirectional drying cells”, RSC Adv., 10:27 (2020), 15763–15768 | DOI
[20] Homede E., Manor O., “Deposition of nanoparticles from a volatile carrier liquid”, J. Col. Int. Sci., 562 (2020), 102–111 | DOI
[21] Li D., Chen R., Zhu X., et al., “Light-fueled beating coffee-ring deposition for droplet evaporative crystallization”, Anal. Chem., 93:25 (2021), 8817–8825 | DOI
[22] Shao X., Hou Y., Zhong X., “Intense jet flow with symmetric vortices induced by saline concentration gradient at free surface of a drying saline droplet”, Int. Comm. Heat Mass Transf., 128 (2021), 105573 | DOI
[23] Hegde O., Chatterjee R., Rasheed A., et al., “Multiscale vapor-mediated dendritic pattern formation and bacterial aggregation in complex respiratory biofluid droplets”, J. Col. Int. Sci., 606 (2022), 2011–2023 | DOI
[24] Corletto A., Shapter J. G., “Thickness/morphology of functional material patterned by topographical discontinuous dewetting”, Nano Select, 2021, no. 9, 1723–1740 | DOI
[25] Bayat F., Tajalli H., “Nanosphere lithography: the effect of chemical etching and annealing sequence on the shape and spectrum of nano-metal arrays”, Heliyon, 6:2 (2020), e03382 | DOI
[26] Bhardwaj R., Fang X., Somasundaran P., Attinger D., “Self-assembly of colloidal particles from evaporating droplets: role of {DLVO} interactions and proposition of a phase diagram”, Langmuir, 26:11 (2010), 7833–7842 | DOI
[27] Tarasevich Yu. Yu., Vodolazskaya I. V., Isakova O. P., “Desiccating colloidal sessile drop: Dynamics of shape and concentration”, Coll. Pol. Sci., 289:9 (2011), 1015–1023 | DOI
[28] Kolegov K. S., Lobanov A. I., “Numerical study of mass transfer in drop and film systems using a regularized finite difference scheme in evaporative lithography”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018), 344–363 (In Russian) | DOI
[29] Petsi A. J., Kalarakis A. N., Burganos V. N., “Deposition of Brownian particles during evaporation of two-dimensional sessile droplets”, Chem. Eng. Sci., 65:10 (2010), 2978–2989 | DOI
[30] Hu S., Wang Y., Man X., Doi M., “Deposition patterns of two neighboring droplets: Onsager variational principle studies”, Langmuir, 33:23 (2017), 5965–5972 | DOI
[31] Yang J., Kim H., Lee C., et al., “Phase-field modeling and computer simulation of the coffee-ring effect”, Theor. Comput. Fluid Dyn., 34:5–6 (2020), 679–692 | DOI
[32] Seo H. W., Jung N., Yoo C. S., “Oscillation dynamics of colloidal particles caused by surfactant in an evaporating droplet”, J. Mech. Sci. Technol., 34:2 (2020), 801–808 | DOI
[33] Kim H.-S., Park S. S., Hagelberg F., “Computational approach to drying a nanoparticle-suspended liquid droplet”, J. Nanopart. Res., 13:1 (2010), 59–68 | DOI
[34] Crivoi A., Duan F., “Three-dimensional Monte Carlo model of the coffee-ring effect in evaporating colloidal droplets”, Sci. Rep., 4:1 (2014), 4310 | DOI
[35] Zhang H., Shan Y. G., Li L., et al., “Modeling the self-assembly of nanoparticles into branched aggregates from a sessile nanofluid droplet”, Appl. Therm. Eng., 94 (2016), 650–656 | DOI
[36] Ren J., Crivoi A., Duan Fe., “Disk-ring deposition in drying a sessile nanofluid droplet with enhanced Marangoni effect and particle surface adsorption”, Langmuir, 36:49 (2020), 15064–15074 | DOI
[37] Ren J., Crivoi A., Duan F., “Dendritic nanoparticle self-assembly from drying a sessile nanofluid droplet”, Phys. Chem. Chem. Phys., 23:29 (2021), 15774–15783 | DOI
[38] Lebedev-Stepanov P., Vlasov K., “Simulation of self-assembly in an evaporating droplet of colloidal solution by dissipative particle dynamics”, Colloids Surf. A Physicochem. Eng. Asp., 432 (2013), 132–138 | DOI
[39] Breinlinger T., Kraft T., “A simple method for simulating the coffee stain effect”, Powder Technol., 256 (2014), 279–284 | DOI
[40] Liu W., Midya J., Kappl M., et al., “Segregation in drying binary colloidal droplets”, ACS Nano, 13:5 (2019), 4972–4979 | DOI
[41] Andac T., Weigmann P., Velu S. K. P., et al., “Active matter alters the growth dynamics of coffee rings”, Soft Matter, 15:7 (2019), 1488–1496 | DOI
[42] Kolegov K. S., “Monte Carlo simulation of colloidal particles dynamics in a drying drop”, J. Phys.: Conf. Ser., 1163 (2019), 012043 | DOI
[43] Lebovka N. I., Tarasevich Yu. Yu., Bulavin L. A., et al., “Sedimentation of a suspension of rods: Monte Carlo simulation of a continuous two-dimensional problem”, Phys. Rev. E, 99:5 (2019), 052135 | DOI
[44] Kolegov K. S., Barash L. Yu., “Joint effect of advection, diffusion, and capillary attraction on the spatial structure of particle depositions from evaporating droplets”, Phys. Rev. E, 100:3 (2019), 033304 | DOI
[45] Zolotarev P. A., Kolegov K. S., “Average cluster size inside sediment left after droplet desiccation”, J. Phys.: Conf. Ser., 1740 (2021), 012029 | DOI
[46] Song R., Lee M., Moon H., et al., “Particle dynamics in drying colloidal solution using discrete particle method”, Flex. Print. Electron., 6:4 (2021), 044007 | DOI
[47] Marinaro G., Riekel C., Gentile F., “Size-exclusion particle separation driven by micro-flows in a quasi-spherical droplet: Modelling and experimental results”, Micromachines, 12:2 (2021), 185 | DOI
[48] Hu H., Larson R. G., “Analysis of the microfluid flow in an evaporating sessile droplet”, Langmuir, 21:9 (2005), 3963–3971 | DOI
[49] Park Y., Park Y, Lee J., Lee C., “Simulation for forming uniform inkjet-printed quantum dot layer”, J. Appl. Phys., 125:6 (2019), 065304 | DOI
[50] Kolegov K. S., Simulation of mass transfer in droplet-film systems using a regularized difference scheme in evaporative lithography, Thesis of Dissertation (Cand. Phys. Math. Sci.), Astrakhan State University, Astrakhan, 2018, 162 pp. (In Russian) | DOI
[51] Kolegov K. S., “Simulation of patterned glass film formation in the evaporating colloidal liquid under IR heating”, Microgravity Sci. Technol., 30:1–2 (2018), 113–120 | DOI
[52] Bodiguel H., Leng J., “Imaging the drying of a colloidal suspension”, Soft Matter, 6 (2010), 5451–5460 | DOI
[53] Fischer B. J., “Particle convection in an evaporating colloidal droplet”, Langmuir, 18:1 (2002), 60–67 | DOI
[54] Dorodnitsyn L. V., “Grid oscillations in finite-difference scheme and a method for their approximate analysis”, Comput. Math. Model., 27:4 (2016), 472–488 | DOI | Zbl