Predicting high-temperature rheological deformation and long-term strength of a~viscoplastic material using a~leader sample
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 292-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for predicting creep and long-term strength in conditions of viscous failure mechanism has been proposed and implemented. It is assumed that when the material is loaded, there is no instant plastic deformation or the first stage of creep, and the hypothesis of incompressibility is satisfied. In the developed method, it is shown that if the creep curve under constant stress and the time to failure are known for a pre-tested sample (leader sample), then to obtain the rheological deformation diagram and long-term strength of the material at other stress levels, it is sufficient to know only the initial minimum creep deformation rate (at the initial moment of time) for the samples at these stress levels. The adequacy of the developed method to experimental data for a range of alloys under conditions of tension and torsion of samples has been tested. It has been shown that the prediction results do not depend on the choice of a leader sample from the series of samples tested at different stress levels. The research results demonstrate that the developed method allows not only predicting creep curves and long-term strength (in the asymptotic formulation), but also optimizing the planning of experimental studies to obtain a series of steady-state creep curves under constant stresses.
Keywords: prediction, creep, long-term strength, leader sample.
Mots-clés : viscous fracture
@article{VSGTU_2023_27_2_a5,
     author = {V. P. Radchenko and E. A. Afanaseva and M. N. Saushkin},
     title = {Predicting high-temperature rheological deformation and long-term strength of a~viscoplastic material using a~leader sample},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {292--308},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a5/}
}
TY  - JOUR
AU  - V. P. Radchenko
AU  - E. A. Afanaseva
AU  - M. N. Saushkin
TI  - Predicting high-temperature rheological deformation and long-term strength of a~viscoplastic material using a~leader sample
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 292
EP  - 308
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a5/
LA  - ru
ID  - VSGTU_2023_27_2_a5
ER  - 
%0 Journal Article
%A V. P. Radchenko
%A E. A. Afanaseva
%A M. N. Saushkin
%T Predicting high-temperature rheological deformation and long-term strength of a~viscoplastic material using a~leader sample
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 292-308
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a5/
%G ru
%F VSGTU_2023_27_2_a5
V. P. Radchenko; E. A. Afanaseva; M. N. Saushkin. Predicting high-temperature rheological deformation and long-term strength of a~viscoplastic material using a~leader sample. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 292-308. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a5/

[1] Kachanov L. M., Teoriia polzuchesti [Creep Theory], Fizmatlit, Moscow, 1960, 455 pp. (In Russian)

[2] Rabotnov Yu. N., Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics, 7, North-Holland Publ., Amsterdam, London, 1969, xiv+822 pp. | Zbl

[3] Gol'denblat I. I., Bazhenov V. L., Kopnov V. A., Dlitel'naia prochnost' v mashinostroenii [Long-Term Strength in Machine Building], Mashinostroenie, Moscow, 1977, 246 pp. (In Russian)

[4] Nikitenko A. F., Polzuchest' i dlitel'naia prochnost' metallicheskikh materialov [Creep and Long-Term Strength of Metallic Materials], NGASU, Novosibirsk, 1997, 278 pp. (In Russian)

[5] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological Deformation and Fracture of Materials and Structural Elements], Mashinostroenie-1, Moscow, 2004, 264 pp. (In Russian)

[6] Lepin G. F., Polzuchest' metallov i kriterii zharoprochnosti [Creep of Metals and Heat-Resistance Criteria], Metallurgiya, Moscow, 1976, 344 pp. (In Russian)

[7] Lokoshchenko A. M., Creep and Long-Term Strength of Metals, CRC Press, Boca, Raton, 2018, xviii+545 pp. | DOI

[8] Zakonomernosti polzuchesti i dlitel'noi prochnosti [Regularities of Creep and Long-Term Strength], ed. S. A. Shesterikov, Mashinostroenie, Moscow, 1983, 102 pp. (In Russian)

[9] Sosnin O. V., Gorev B. V. Nikitenko A. F., Energeticheskii variant teorii polzuchesti [Enegry Variant of Theory of Creep], Lavrentyev Institute of Hydrodynamics, Novosibirsk, 1986, 95 pp. (In Russian)

[10] Loktionov V., Lyubashevskaya I., Terentyev E., “The regularities of creep deformation and failure of the VVER’s pressure vessel steel 15Kh2NMFA-A in air and argon at temperature range 500–900 °C”, Nucl. Mat. Energy, 28 (2021), 101019 | DOI

[11] Loktionov V., Lyubashevskaya I., Sosnin O., Terentyev E., “Short-term strength properties and features of high-temperature deformation of VVER reactor pressure vessel steel 15Kh2NMFA-A within the temperature range 20–1200 °C”, Nucl. Eng. Des., 352 (2019), 110188 | DOI

[12] Banshchikova I. A., Nikitenko A. F., “Creep of axisymmetrically loaded plates with allowance for damage accumulation in their material”, J. Appl. Mech. Tech. Phys., 47:5 (2006), 747–756 | DOI

[13] Nikitenko A. F., Lyubashevskaya I. V., “Service life of pressurized vessels”, J. Appl. Mech. Tech. Phys., 48:5 (2007), 766–773 | DOI

[14] Lokoshchenko A. M., Fomin L. V., Teraud W. V., Basalov Yu. G., Agababyan V. S., “Creep and long-term strength of metals under unsteady complex stress states (Review)”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 275–318 (In Russian) | DOI

[15] Robinson E. L., “Effect of temperature variation on the long-time rupture strength of steels”, Trans. ASME, 74:5 (1952), 777–780 | DOI

[16] Omprakash C. M., Kumar A., Srivathsa B., Satyanarayana D. V. V., “Prediction of creep curves of high temperature alloys using $\theta$-projection concept”, Procedia Engineering, 55 (2013), 756–759 | DOI

[17] Lundin C. D., Aronson A. H., Jackman L. A., Clough W. R., “Very-short-time, very-high-temperature creep rupture of type 347 stainless steel and correlation of data”, J. Basic Eng., 91:1 (1969), 32–38 | DOI

[18] Hoff N. J., “The necking and the rupture of rods subjected to constant tensile loads”, J. Appl. Mech., 20:1 (1953), 105–108 | DOI

[19] Mozharovskaya T. N., “Relationship of the time until failure in long-term loading under conditions of the plane stressed state to the minimum rate of creep deformations”, Strength Mater., 14:12 (1982), 1635–1639 | DOI

[20] Volkov I. A., Korotkikh Yu. G., Uravneniia sostoianiia viazkouprugoplasticheskikh sred s povrezhdeniiami [Equations of State for Viscoelastic-Plastic Media with Damage], Fizmatlit, Moscow, 2008, 424 pp. (In Russian)

[21] Boyko S.V., Modeling the Formation of Structural Elements under Unsteady Creep Conditions, Thesis of Dissertation (Cand. Phys. Math. Sci.), Lavrentyev Institute of Hydrodynamics, Novosibirsk, 133 pp. (In Russian)