Uniform optimization method for nonlinear control systems with distributed parameters
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 270-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of optimization of a nonlinear controlled system with distributed parameters, and uniformly estimated target sets is reduced to controlling a linear model of the object. This linear model incorporates an additional, a priori unknown spatiotemporal disturbance that compensates for the influence of discrepancies between the linear and nonlinear differential operators in the corresponding initial-boundary value problems. Partial differential equations of the parabolic type describe these problems. The specific form of the disturbance’s dependence on its arguments is identified based on the initial approximation at each step of the proposed convergent iterative procedure. This procedure is based on the results obtained in the previous step from solving the linear-quadratic programming optimal control problem using the developed alternance method. This problem includes a deterministic external input and requires the intermediate computation of the controlled state function of the nonlinear object using a digital model. It has been shown that the desired equations for the optimal regulators can be obtained from the known results of the iterative process used to find the program control. The control is represented as linear feedback algorithms based on the measured state of the object, which uses nonstationary transfer coefficients.
Keywords: nonlinear system with distributed parameters, linear-quadratic optimization problem, iterative procedure, alternance method, parameterization of control actions, software optimal control, optimal control synthesis.
@article{VSGTU_2023_27_2_a4,
     author = {\`E. Ya. Rapoport},
     title = {Uniform optimization method for nonlinear control systems with distributed parameters},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {270--291},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a4/}
}
TY  - JOUR
AU  - È. Ya. Rapoport
TI  - Uniform optimization method for nonlinear control systems with distributed parameters
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 270
EP  - 291
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a4/
LA  - ru
ID  - VSGTU_2023_27_2_a4
ER  - 
%0 Journal Article
%A È. Ya. Rapoport
%T Uniform optimization method for nonlinear control systems with distributed parameters
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 270-291
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a4/
%G ru
%F VSGTU_2023_27_2_a4
È. Ya. Rapoport. Uniform optimization method for nonlinear control systems with distributed parameters. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 270-291. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a4/

[1] Vasilev F. P., Metody optimizatsii [Optimization Methods], Faktorial Press, Moscow, 2002, 824 pp. (In Russian)

[2] Moiseev N. N., Elementy teorii optimal'nykh sistem [Elements of the Theory of Optimal Systems], Nauka, Moscow, 1975, 526 pp. (In Russian)

[3] Afanas'ev V. N., Kolmanovsky V. B., Nosov V. R., Matematicheskaia teoriia konstruirovaniia sistem upravleniia [Mathematical Theory of Control Systems Design], Vyssh. shk., Moscow, 1998, 574 pp. (In Russian)

[4] Tyatyushkin A. N., Mnogometodnaia tekhnologiia optimizatsii upravliaemykh sistem [Multimethod Technology for Optimization of Control Systems], Nauka, Novosibirsk, 2006, 343 pp. (In Russian)

[5] Butkovsky A. G., Metody upravleniia sistemami s raspredelennymi parametrami [Methods of Control by Systems with Distributed Parameters], Nauka, Moscow, 1975, 564 pp. (In Russian)

[6] Fedorenko R. P., Priblizhennoe reshenie zadach optimal'nogo upravleniia [Approximate Solution of Optimal Control Problems], Nauka, Moscow, 1978, 488 pp. (In Russian)

[7] Rapoport E. Ya., Optimal'noe upravlenie sistemami s raspredelennymi parametrami [Optimal Control of Systems with Distributed Parameters], Vyssh. shk., Moscow, 2009, 677 pp. (In Russian)

[8] Rapoport E. Ya., Al'ternansnyi metod v prikladnykh zadachakh optimizatsii [Alternance Method in Applied Optimization Problems], Nauka, Moscow, 2000, 336 pp. (In Russian)

[9] Rapoport E. Ya., Pleshivceva Yu. E., Metody polubeskonechnoi optimizatsii v prikladnykh zadachakh upravleniia sistemami s raspredelennymi parametrami [Methods of Semi-Infinite Optimization in Applied Problems of Control of Systems with Distributed Parameters], Nauka, Moscow, 2021, 286 pp. (In Russian)

[10] Rapoport E. Ya., “Analytical construction of aggregated controllers in systems with distributed parameters”, J. Comput. Syst. Sci. Int., 51:3 (2012), 375–390 | DOI

[11] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki [Boundary Value Problems of Mathematical Physics], Nauka, Moscow, 1973, 407 pp. (In Russian)

[12] Vladimirov V. S., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1981, 512 pp. (In Russian)

[13] Egorov A. I., Znamenskaya L. N., Vvedenie v teoriiu upravleniia sistemami s raspredelennymi parametrami [Introduction to the Theory of Control Systems with Distributed Parameters], Lan', St. Petersburg, 2017, 292 pp. (In Russian)

[14] Polyanin A. D., Spravochnik po lineinym uravneniiam matematicheskoi fiziki [Handbook of Linear Equations of Mathematical Physics], Fizmatlit, Moscow, 2001, 576 pp. (In Russian)

[15] Rapoport E. Ya., “Analytical design of the optimal controllers in linear-quadratic problems of controlling systems with distributed parameters under uniform estimates of target sets”, J. Comput. Syst. Sci. Int., 60:3 (2021), 364–378 | DOI | DOI

[16] Koshliakov N. S., Gliner E. B., Smirnov M. M., Uravneniia v chastnykh proizvodnykh matematicheskoi fiziki [Partial Differential Equations of Mathematical Physics], Vyssh. shk., Moscow, 1970, 712 pp. (In Russian)

[17] Rapoport E. Ya., Strukturnoe modelirovanie ob"ektov i sistem upravleniia s raspredelennymi parametrami [Structural Modeling of Objects and Control Systems with Distributed Parameters], Vyssh. shk., Moscow, 2003, 302 pp. (In Russian)

[18] Valeev G. K., Zhautykov O. A., Beskonechnye sistemy differentsial'nykh uravnenii [Infinite Systems of Differential Equations], Nauka, Alma-Ata, 1974, 415 pp. (In Russian)

[19] Persidsky K. P., “On the stability of solutions of a countable system of differential equations”, Izv. AN KazSSR. Ser. Mat. Mekh., 1948, no. 2, 2–35 (In Russian)

[20] Koval' V. A., Spektral'nyi metod analiza i sinteza raspredelennykh upravliaemykh sistem [Spectral Method of Analysis and Synthesis of Distributed Control Systems], Saratov State Techn. Univ., Saratov, 1997, 192 pp. (In Russian)

[21] Egorov Yu. V., “Necessary conditions for optimal control in Banach spaces”, Mat. Sb. (N.S.), 64(106):1 (1964), 79–101 (In Russian) | MR | Zbl

[22] Rapoport E. Ya., “Uniform optimization of controlled systems with distributed parameters”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:3 (2022), 419–445 (In Russian) | DOI

[23] Pleshivtseva Yu. E., Rapoport E. Yu., “Spatiotemporal control of systems with distributed parameters in linear-quadratic optimization problems with uniform estimates of target sets”, J. Comput. Syst. Sci. Int., 61:4 (2022), 523–538 | DOI | DOI

[24] Pleshivtseva Yu. E., Rapoport E. Ya., “The successive parameterization method of control actions in boundary value optimal control problems for distributed parameter systems”, J. Comput. Syst. Sci. Int., 48:3 (2009), 351–362 | DOI

[25] Rapoport E. Ya., Analiz i sintez sistem avtomaticheskogo upravleniia s raspredelennymi parametrami [Analysis and Synthesis of Automatic Control Systems with Distributed Parameters], Vyssh. shk., Moscow, 2005, 292 pp. (In Russian)

[26] Kudryavtsev L. D., Kurs matematicheskogo analiza [Course of Mathematical Analysis], v. 1, Vyssh. shk., Moscow, 1988, 712 pp. (In Russian)