Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_2_a3, author = {E. K. Bashkirov}, title = {Dynamics of an exactly solvable model of~cavity quantum electrodynamics}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {250--269}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a3/} }
TY - JOUR AU - E. K. Bashkirov TI - Dynamics of an exactly solvable model of~cavity quantum electrodynamics JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 250 EP - 269 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a3/ LA - ru ID - VSGTU_2023_27_2_a3 ER -
%0 Journal Article %A E. K. Bashkirov %T Dynamics of an exactly solvable model of~cavity quantum electrodynamics %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 250-269 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a3/ %G ru %F VSGTU_2023_27_2_a3
E. K. Bashkirov. Dynamics of an exactly solvable model of~cavity quantum electrodynamics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 250-269. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a3/
[1] Buluta I., Ashhab S., Nori F., “Natural and artificial atoms for quantum computation”, Rep. Prog. Phys., 74:10, 104401 (2011), 1–34, arXiv: [quant-ph] 1002.1871 | DOI
[2] Walther H., Varcoe B. T. H., Englert B.-G., Becker T., “Cavity quantum electrodynamics”, Rep. Prog. Phys, 69:5 (2011), 1325–1382 | DOI
[3] Leibfried D., Blatt R., Monroe C., Wineland D., “Quantum dynamics of single trapped ions”, Rev. Mod. Phys., 75:1 (2003), 281–324 | DOI
[4] Xiang Z.-L., Ashhab S., You J. Q., Nori F., “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems”, Rev. Mod. Phys., 85:2 (2013), 623–653 | DOI
[5] Georgescu I. M., Ashhab S., Nori F., “Quantum simulation”, Rev. Mod. Phys., 88:1 (2014), 153–185 | DOI
[6] Gu X., Kockum A.F., Miranowicz A., et al., “Microwave photonics with superconducting quantum circuits”, Phys. Repts., 718–719 (2017), 1–102 | DOI
[7] Wendin G., “Quantum information processing with super-conducting circuits: a review”, Rep. Prog. Phys., 80:10 (2017), 106001 | DOI
[8] Li G.-Q., Pan X.-Y., “Quantum information processing with nitrogen–vacancy centers in diamond”, Chinese Phys. B, 27:2 (2018), 020304, 1–13 | DOI
[9] Kim M. S., Lee J., Ahn D., Knight P. L., “Entanglement induced by a single-mode heat environment”, Phys. Rev. A, 65:4 (2002), 040101(R) | DOI
[10] Zhou L., Song H. S., “Entanglement induced by a single-mode thermal field and criteria for entanglement”, J. Opt. B: Quantum Semiclass. Opt., 4:6 (2002), 425–429 | DOI
[11] Bashkirov E. K., “Entanglement induced by the two-mode thermal noise”, Laser Phys. Lett., 3:3 (2006), 145–150 | DOI
[12] Bashkirov E. K., Stupatskaya M. P., “The entanglement of two dipole-dipole coupled atoms induced by nondegenerate two-mode thermal noise”, Laser Phys., 19:3 (2009), 525–530 | DOI
[13] Bashkirov E. K., Mastyugin M. S., “The influence of the dipole-dipole interaction and atomic coherence on the entanglement of two atoms with degenerate two-photon transitions”, Opt. Spectrosc., 116:4 (2014), 630–634 | DOI
[14] Bashkirov E. K., Mangulova E. G., “Entanglement induced by two-mode thermal noise taking into account the dipole-dipole interaction and atomic coherence”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 2(31), 177–184 (In Russian) | DOI
[15] Zhang B., “Entanglement between two qubits interacting with a slightly detuned thermal field”, Opt. Commun., 283:23 (2010), 4676–4679 | DOI
[16] Aguiar L. S., Munhoz P. P., Vidiella-Barranco A., Roversi J., “The entanglement of two dipole-dipole coupled in a cavity interacting with a thermal field”, J. Opt. B: Quantum Semiclass. Opt., 7:12 (2005), S769–S771 | DOI
[17] Bashkirov E. K., Mastyugin M. S., “Entanglement of two qubits interacting with one-mode quantum field”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 205–220 (In Russian) | DOI | Zbl
[18] Yu T., Eberly J. H., “Finite-time disentanglement via spontaneous emission”, Phys. Rev. Lett., 93:14 (2004), 140404, arXiv: quant-ph/0404161 | DOI
[19] Yu T., Eberly J. H., “Sudden death of entanglement”, Science, 323:5914 \linebreak (2009), 598–601, arXiv: [quant-ph] 0910.1396 | DOI
[20] Wang F., Hou P.-Y., Huang Y. Y., et al., “Observation of entanglement sudden death and rebirth by controlling a solid-state spin bath”, Phys. Rev. B, 98:6 (2018), 064306, arXiv: [quant-ph] 1801.02729 | DOI
[21] Sun G., Zhou Z., Mao B., et al., “Entanglement dynamics of a superonducting phase qubit coupled to a two-level system”, Phys. Rev. B, 86:6 (2012), 064502, arXiv: [cond-mat.mes-hall] 1111.3016 | DOI
[22] Bashkirov E. K., “Entanglement in Tavis-Cummings model with Kerr nonlinearity induced by a thermal noise”, Saratov Fall Meeting 2020: Laser Physics, Photonic Technologies, and Molecular Modeling (Saratov, Russia), Proc. SPIE, 11846, 2021, 118460W | DOI
[23] Salles A., de Melo F., Almeida M. P., et al., “Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment”, Phys. Rev. A, 78:2 (2008), 022322, arXiv: [quant-ph] 0804.4556 | DOI
[24] Puri S, Boutin S., Blais A., “Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving”, Quantum Inf., 3:1 (2017), 18 | DOI
[25] Manosh T. M., Ashefas M., Thayyullathil R. B., “Effects of Kerr medium in coupled cavities on quantum state transfer”, J. Nonlinear Opt. Phys. Mater., 27:3 (2018), 1850035 | DOI
[26] Al Naim A. F., Khan J. Y., Khalil E. M., Abdel-Khalek S., “Effects of Kerr medium and Stark shift parameter on Wehrl entropy and the field puruty for two-photon Jaynes–Cummings model under dispersive approximation”, J. Russ. Laser Res., 40:1 (2019), 20–29 | DOI
[27] Anwar S. J., Ramzan M., Khan M. K., “Effect of Stark- and Kerr-like medium on the entanglement dynamics of two three-level atomic systems”, Quant. Inform. Proc., 18:192 (2019), 1–14 | DOI
[28] Adanmitonde A. J., Avossevou G. Y. H., Dossa F. A., “Quantization of some generalized Jaynes–Cummings models in a Kerr-like medium”, Theoret. and Math. Phys., 203:3 (2020), 824–836 | DOI | DOI | MR
[29] Aldaghfag S. A., Berrada K., Abdel-Khalek S., “Entanglement and photon statistics of two dipole-dipole coupled superconducting qubits with Kerr-like nonlinearities”, Results in Phys., 16 (2020), 102978 | DOI
[30] Kirchmair G., Vlastakis B., Leghtas Z., et al., “Observation of quantum state collapse and revival due to the single-photon Kerr effect”, Nature, 495:7440 (2013), 205–209 | DOI
[31] Evseev M. M., Bashkirov E. K., “Thermal entanglement in Tavis–Cummings model with Kerr nonlinearity”, 2020 International Conference on Information Technology and Nanotechnology (ITNT) (26–29 May 2020, Samara, Russia), 2020, 9253347 | DOI
[32] Bashkirov E. K., “Dynamics of two-photon Tavis–Cummings model with Kerr media”, 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT) (23–27 May 2022, Samara, Russia), 2022, 9848606 | DOI
[33] Mlynek J. A., Abdumalikov A. A., Fink J. M., et al., “Demonstrating W-type entanglement of Dicke states in resonant cavity quantum electrodynamics”, Phys. Rev. A, 86:5 (2012), 053838 | DOI
[34] Peres A., “Separability criterion for density matrices”, Phys. Rev. Lett., 77:8 (1996), 1413–1415 | DOI
[35] Horodecki M., Horodecki P., Horodecki R., “Separability of mixed states: necessary and sufficient conditions”, Phys. Lett. A, 223:1–2 (1996), 1–8 | DOI