Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_2_a1, author = {M. I. Liaqat and A. Akg\"ul and E. Yu. Prosviryakov}, title = {An efficient method for the analytical study of linear and~nonlinear time-fractional partial differential equations~with variable coefficients}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {214--240}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a1/} }
TY - JOUR AU - M. I. Liaqat AU - A. Akgül AU - E. Yu. Prosviryakov TI - An efficient method for the analytical study of linear and~nonlinear time-fractional partial differential equations~with variable coefficients JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 214 EP - 240 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a1/ LA - en ID - VSGTU_2023_27_2_a1 ER -
%0 Journal Article %A M. I. Liaqat %A A. Akgül %A E. Yu. Prosviryakov %T An efficient method for the analytical study of linear and~nonlinear time-fractional partial differential equations~with variable coefficients %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 214-240 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a1/ %G en %F VSGTU_2023_27_2_a1
M. I. Liaqat; A. Akgül; E. Yu. Prosviryakov. An efficient method for the analytical study of linear and~nonlinear time-fractional partial differential equations~with variable coefficients. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 214-240. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a1/
[1] Kulish V. V., Lage J. L., “Application of fractional calculus to fluid mechanics”, J. Fluids Eng., 124:3 (2002), 803–806 | DOI
[2] Tarasov V. E., “On history of mathematical economics: Application of fractional calculus”, Mathematics, 7:6 (2019), 509 | DOI
[3] Sun H., Zhang Y., Baleanu D., Chen W., Chen Y., “A new collection of real world applications of fractional calculus in science and engineering”, Comm. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231 | DOI | Zbl
[4] Dalir M., Bashour M., “Applications of fractional calculus”, Appl. Math. Sci., 4:21 (2010), 1021–1032 | Zbl
[5] Valério D., Machado J. T., Kiryakova V., “Some pioneers of the applications of fractional calculus”, Fract. Calc. Appl. Anal., 17:2 (2014), 552–578 | DOI | Zbl
[6] Liaqat M. I., Akgül A., Abu-Zinadah H., “Analytical investigation of some time-fractional Black–Scholes models by the Aboodh residual power series method”, Mathematics, 11:2 (2023), 276 | DOI
[7] Traore A., Sene N., “Model of economic growth in the context of fractional derivative”, Alexandria Eng. J., 59:6 (2020), 4843–4850 | DOI
[8] Hilfer R., Luchko Y., Tomovski Z., “Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives”, Fract. Calc. Appl. Anal., 12:3 (2009), 299–318 | Zbl
[9] Bas E., Ozarslan R., “Real world applications of fractional models by Atangana–Baleanu fractional derivative”, Chaos, Solitons, Fractals, 116 (2018), 121–125 | DOI | Zbl
[10] Almeida R., “A Caputo fractional derivative of a function with respect to another function”, Comm. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481 | DOI | Zbl
[11] Khan A., Liaqat M. I., Alqudah M. A., Abdeljawad T., “Analysis of the conformable temporal-fractional Swift–Hohenberg equation using a novel computational technique”, Fractals, 31:4 (2023), 2340050 | DOI
[12] Odibat Z., Momani S., Erturk V. S., “Generalized differential transform method: Application to differential equations of fractional order”, Appl. Math. Comp., 197:2 (2008), 467–477 | DOI | Zbl
[13] Anjum N., He J.-H., “Laplace transform: Making the variational iteration method easier”, Appl. Math. Letters, 92 (2019), 134–138 | DOI | Zbl
[14] Dehestani H., Ordokhani Y., Razzaghi M., “Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations”, Engineering with Computers, 37:3 (2021), 1791–1806 | DOI
[15] Liaqat M. I., Khan A., Alqudah M. A., Abdeljawad T., “Adapted homotopy perturbation method with Shehu transform for solving conformable fractional nonlinear partial differential equations”, Fractals, 31:2 (2023), 2340027 | DOI
[16] Xiang W., Yan S., Wu J., Niu W., “Dynamic response and sensitivity analysis for mechanical systems with clearance joints and parameter uncertainties using Chebyshev polynomials method”, Mech. Syst. Signal Proc., 138 (2020), 106596 | DOI
[17] Liaqat M. I., Etemad S., Rezapour S., Park C., “A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients”, AIMS Math., 7:9 (2022), 16917–16948 | DOI
[18] Ratas M., Salupere A., Majak J., “Solving nonlinear PDEs using the higher order Haar wavelet method on nonuniform and adaptive grids”, Math. Model. Anal., 26:1 (2021), 147-169 | DOI | Zbl
[19] Liaqat M. I., Khan A., Akgül A., “Adaptation on power series method with conformable operator for solving fractional order systems of nonlinear partial differential equations”, Chaos, Solitons, Fractals, 157 (2022), 111984 | DOI
[20] Zhang Y., Kumar A., Kumar S., et al., “Residual power series method for time-fractional Schrödinger equations”, J. Nonlinear Sci. Appl., 9:11 (2016), 5821–5829 | DOI
[21] El-Ajou A., Arqub O. A., Momani S., “Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm”, J. Comp. Phys., 293 (2015), 81–95 | DOI | Zbl
[22] Saadeh R., Alaroud M., Al-Smadi M., et al., “Application of fractional residual power series algorithm to solve Newell–Whitehead–Segel equation of fractional order”, Symmetry, 11:12 (2019), 1431 | DOI
[23] Eriqat T., El-Ajou A., Oqielat M. N., et al., “A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations”, Chaos, Solitons, Fractals, 138 (2020), 109957 | DOI | Zbl
[24] Hesameddini E., Rahimi A., “Solving fractional partial differential equations with variable coefficients by the reconstruction of variational iteration method”, Z. Naturforsch., A, 70:5 (2015), 375–382 | DOI
[25] Keskin Y., Karaoglu O., Servi S., “The approximate solution of high-order linear fractional differential equations with variable coefficients in terms of generalized Taylor polynomials”, Math. Comput. Appl., 16:3 (2011), 617–629 | DOI | Zbl
[26] Sarwar S., Alkhalaf S., Iqbal S., Zahid M. A., “A note on optimal homotopy asymptotic method for the solutions of fractional order heat-and wave-like partial differential equations”, Comp. Math. Appl., 70:5 (2015), 942–953 | DOI | Zbl
[27] Rostamy D., Karimi K., “Bernstein polynomials for solving fractional heat- and wave-like equations”, Fract. Calc. Appl. Anal., 15:4 (2012), 556–571 | DOI | Zbl
[28] Bulut H., Baskonus H. M., Tuluce S., “The solutions of partial differential equations with variable coefficient by Sumudu transform method”, AIP Conf. Proc., 1493 (2012), 91–95 | DOI
[29] Nadeem M., Li F., Ahmad H., “Modified Laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients”, Comp. Math. Appl., 78:6 (2019), 2052–2062 | DOI | Zbl
[30] Dehghan M., Manafian J., “The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method”, Z. Naturforsch., A, 64:7–8 (2009), 420–430 | DOI
[31] Elzaki T. M., Ezaki S. M., “On the Elzaki transform and ordinary differential equation with variable coefficients”, Adv. Theor. Appl. Math., 6:1 (2011), 41–46
[32] Khan H., Shah R., Kumam P., Arif M., “Analytical solutions of fractional-order heat and wave equations by the natural transform decomposition method”, Entropy, 21:6 (2019), 597 | DOI
[33] Khalouta A., Kadem A., “A new computational for approximate analytical solutions of nonlinear time-fractional wave-like equations with variable coefficients”, AIMS Math., 5:1 (2020), 1–14 | DOI | Zbl
[34] Silva F. S., Moreira D. M., Moret M. A., “Conformable Laplace transform of fractional differential equations”, Axioms, 7:3 (2018), 55 | DOI | Zbl
[35] Prakasha D. G., Veeresha P., Baskonus H. M., “Residual power series method for fractional Swift-Hohenberg equation”, Fractal Fract., 3:1 (2019), 9 | DOI