Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_1_a8, author = {D. A. Shlyakhin and E. V. Savinova}, title = {A coupled non-stationary axisymmetric problem of~thermoelectroelasticity for a circular piezoceramic hinged~plate}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {159--178}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a8/} }
TY - JOUR AU - D. A. Shlyakhin AU - E. V. Savinova TI - A coupled non-stationary axisymmetric problem of~thermoelectroelasticity for a circular piezoceramic hinged~plate JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 159 EP - 178 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a8/ LA - ru ID - VSGTU_2023_27_1_a8 ER -
%0 Journal Article %A D. A. Shlyakhin %A E. V. Savinova %T A coupled non-stationary axisymmetric problem of~thermoelectroelasticity for a circular piezoceramic hinged~plate %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 159-178 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a8/ %G ru %F VSGTU_2023_27_1_a8
D. A. Shlyakhin; E. V. Savinova. A coupled non-stationary axisymmetric problem of~thermoelectroelasticity for a circular piezoceramic hinged~plate. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 159-178. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a8/
[1] Ionov B. P., Ionov A. B., “Spectral-statistical approach to non-contact temperature measurement”, Sensors and Systems, 2009, no. 2, 9–11 (In Russian)
[2] Pankov A. A., “Resonant diagnostics of temperature distribution by the piezo-electro-luminescent fiber-optical sensor according to the solution of the fredholm integral equation”, PNRPU Mechanics Bulletin, 2018, no. 2, 72–82 (In Russian) | DOI
[3] Mindlin R. D., “Equations of high frequency vibrations of thermopiezoelectric crystal plates”, Int. J. Solids Struct., 10:6 (1974), 625–637 | DOI
[4] Green A. E., “Thermoelasticity without energy dissipation”, J. Elasticity, 31 (1993), 189–208 | DOI
[5] Saadatfar M., Razavi A. S., “Piezoelectric hollow cylinder with thermal gradient”, J. Mech. Sci. Technol., 23 (2009), 45–53 | DOI
[6] Podil'chuk Y. N., “Exact analytical solutions of static electroelastic and thermoelectroelastic problems for a transversely isotropic body in curvilinear coordinate systems”, Int. Appl. Mech., 2003, no. 39, 132–170 | DOI
[7] Khorsand M., “Dynamic analysis of a functionally graded piezoelectric spherical shell under mechanical and thermal shocks”, J. Mech. Eng. Sci., 228:4 (2014), 632–645 | DOI
[8] Akbarzadeh A. H., Babaei M. H., Chen Z. T., “The thermo-electromagnetoelastic behavior of a rotating functionally graded piezoelectric cylinder”, Smart Mater. Struct., 20:6 (2011), 065008 | DOI
[9] Rahimi G. H., Arefi M., Khoshgoftar M. J., “Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads”, Appl. Math. Mech., 32:8 (2011), 997–1008 | DOI
[10] Shlyakhin D. A., Kalmova M. A., “Uncoupled problem of thermoelectroelasticity for a cylindrical shell”, XXX Russian-Polish-Slovak Seminar Theoretical Foundation of Civil Engineering, Lecture Notes in Civil Engineering, 189, Springer, Cham, 2022, 263–271 | DOI
[11] Shlyakhin D. A., Savinova E. V., Yurin V. A., “Dynamic problem of thermoelectricity for round rigidly fixed plate”, FEFU School of Engineering Bulletin, 2022, no. 1(50), 3–16 (In Russian) | DOI
[12] Vatulyan A. O., “Thermal shock on the thermoelectroelastic layer”, Vestnik of Don State Technical University, 1:1 (2001), 82–89 (In Russian)
[13] Vatulyan A. O. Nesterov S. A., “Dynamic problem of thermoelectroelasticity for a functional-gradient layer”, Computational Continuum Mechanics, 10:2 (2017), 117–126 (In Russian) | DOI
[14] Babeshko V. A., Ratner S. V., Syromyatnikov P. V., “On mixed problems for thermoelectroelastic media with discontinuous boundary conditions”, Dokl. Phys., 52:2 (2007), 90–95 | DOI
[15] Shang F., Kuna M., Kitamura T., “Theoretical investigation of an elliptical crack in thermopiezoelectric material. Part I: Analytical development”, J. Theor. Appl. Fract. Mech., 40:3 (2003), 237–246 | DOI
[16] Kirilyuk V. S., “Thermostressed state of a piezoelectric body with a plate crack under symmetric thermal load”, Int. Appl. Mech., 44 (2008), 320–330 | DOI
[17] Shlyakhin D. A., Kalmova M. A., “The coupled non-stationary thermo-electro-elasticity problem for a long hollow cylinder”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 677–691 (In Russian) | DOI
[18] Shlyakhin D. A., Kalmova M. A., “The nonstationary thermoelectric elasticity problem for a long piezoceramic cylinder”, PNRPU Mechanics Bulletin, 2021, no. 2, 181–190 (In Russian) | DOI
[19] Abou–Dina M., Dhaba A. R. E, Ghaleb A. F., Rawy E. K., “A model of nonlinear thermo-electroelasticity in extended thermodynamics”, Int. J. Eng. Sci., 119 (2017), 29–39 | DOI
[20] Parton V. Z., Kudryavtsev B. A., Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids, Gordon and Breach Science, New York, 1988, xix+503 pp.
[21] Senitskii Yu. E., “A biorthogonal multicomponent finite integral transformation and its application to boundary value problems in mechanics”, Russian Math. (Iz. VUZ), 40:8 (1996), 69–79 | MR | Zbl
[22] Tung V. T., Tinh N. T., Yen N. H., Tuan D. A., “Evaluation of electromechanical coupling factor for piezoelectric materials using finite element modeling”, Int. J. Mat. Chem., 3:3 (2013), 59–63 | DOI