Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_1_a7, author = {G. B. Sizykh}, title = {On a paradoxical property of solving the problem of~stationary flow around a~body by a~subsonic stratified flow of an ideal gas}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {142--158}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a7/} }
TY - JOUR AU - G. B. Sizykh TI - On a paradoxical property of solving the problem of~stationary flow around a~body by a~subsonic stratified flow of an ideal gas JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 142 EP - 158 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a7/ LA - ru ID - VSGTU_2023_27_1_a7 ER -
%0 Journal Article %A G. B. Sizykh %T On a paradoxical property of solving the problem of~stationary flow around a~body by a~subsonic stratified flow of an ideal gas %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 142-158 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a7/ %G ru %F VSGTU_2023_27_1_a7
G. B. Sizykh. On a paradoxical property of solving the problem of~stationary flow around a~body by a~subsonic stratified flow of an ideal gas. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 142-158. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a7/
[1] Sizykh G. B., “Helical vortex lines in axisymmetric viscous incompressible fluid flows”, Fluid Dyn., 54:8 (2019), 1038–1042 | DOI | DOI
[2] Mironyuk I. Yu., Usov L. A., “The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 780–789 (In Russian) | DOI
[3] Markov V. V., Sizykh G. B., “Existence criterion for the equations solution of ideal gas motion at given helical velocity”, Izvestiya VUZ. Applied Nonlinear Dynamics, 28:6 (2020), 643–652 (In Russian) | DOI
[4] Van Dyke M., An Album of Fluid Motion, Parabolic Press, Stanford, California, 1982, 176 pp.
[5] Matyash E. S., Savelyev A. A., Troshin A. I., Ustinov M. V., “Allowance for gas compressibility in the $\gamma$-model of the laminar–turbulent transition”, Comput. Math. Math. Phys., 59:6 (2019), 1720–1731 | DOI | DOI
[6] Korolev G. L., “Steady viscous flow past an elliptic cylinder up to Reynolds number 900”, TsAGI Science Journal, 43:5 (2012), 615–635 | DOI
[7] Egorov I. V., Fedorov A. V., Palchekovskaya N., Obraz A. O., “Effects of injection on heat transfer and the boundary-layer instability for a hypersonic blunt body configuration”, Int. J. Heat Mass Transfer, 149 (2020), 119197 | DOI
[8] Chuvakhov P. V., Egorov I. V., “Numerical simulation of disturbance evolution in the supersonic boundary layer over an expansion corner”, Fluid Dyn., 56:5 (2021), 645–656 | DOI | DOI
[9] Loytsyansky L. G., Mechanics of Liquids and Gases, International Series of Monographs in Aeronautics and Astronautics, 6, Pergamon Press, Oxford, 1966, xii+804 pp.
[10] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki [Lectures on Basic Gas Dynamics], Institute of Computer Studies, Moscow, Izhevsk, 2003, 336 pp. (In Russian)
[11] Ladyzhenskii M. D., Prostranstvennye giperzvukovye techeniia gaza [Spatial Hypersonic Gas Flows], Mashinostroenie, Moscow, 1968, 120 pp. (In Russian)
[12] Nikol'skii A. A., Teoreticheskie issledovaniia po mekhanike zhidkosti i gaza [Theoretical Studies in Fluid and Gas Mechanics], Tr. TsAGI, 2122, TsAGI, Moscow, 1981, 286 pp. (In Russian)
[13] Mironyuk I. Yu., Usov L. A., “Stagnation points on vortex lines in flows of an ideal gas”, Proc. of MIPT, 12:4 (2020), 171–176 (In Russian) | DOI
[14] Sizykh G. B., “Integral invariant of ideal gas flows behind a detached bow shock”, Fluid Dyn., 56:8 (2021), 1027–1030 | DOI | DOI
[15] Ankudinov A. L., “A kinetic shock layer in the spreading plane of a lifting-body apparatus”, Fluid Dyn., 56:7 (2021), 967–974 | DOI | DOI
[16] Sizykh G. B., “Second integral generalization of the Crocco invariant for 3D flows behind detached bow shock wave”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021), 588–595 (In Russian) | DOI | Zbl
[17] Batchelor G. K., An Introduction to Fluid Dynamics, University Press, Cambridge, 1970, xviii+615 pp.
[18] Sizykh G. B., “The stagnation line behind a detached bow shock wave in plane flows”, Proc. of MIPT, 14:4 (2022), 84–94 (In Russian)
[19] Sedov L. I., A Course in Continuum Mechanics, v. 1, Basic Equations and Analytical Techniques, Wolters-Noordhoff Publ., Groningen, The Netherlands, 1971, xix+242 pp. | Zbl | Zbl
[20] Mises R., Mathematical Theory of Compressible Fluid Flow, Applied Mathematics and Mechanics, 3, Academic Press, New York, London, 1958, xiii+514 pp. | Zbl
[21] Pontryagin L. S., Ordinary Differential Equations, Adiwes International Series in Mathematics, Pergamon Press, London, Paris, 1962, vi+298 pp. | Zbl | Zbl
[22] Sizykh G. B., “Solution of the Dorodnitsin problem”, Proc. of MIPT, 14:4 (2022), 95–107 (In Russian)
[23] Prim R., Truesdell C., “A derivation of Zorawski's criterion for permanent vector-lines”, Proc. Amer. Math. Soc., 1:1 (1950), 32–34 | DOI
[24] Truesdell C., The Kinematics of Vorticity, Indiana University Publications Science Seres, 14, Indiana University Press, Bloomington, 1954, xvii+232 pp. | Zbl