The influence of creep deformations on the subsequent plastic flow in a material of rotating cylinde
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 102-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The influence of creep deformations on the process of plastic flow in a material is studied by using the example of the rotational motion of a cylinder with an inner cavity (a pipe) that has a rigid coating on its outer boundary to prevent radial expansion. The problem is solved within the frameworks of the theory of infinitesimal deformations. The theory of plastic flow with the associated condition of maximum octahedral stresses of von Mises, generalized to the case of viscoplastic flow, is used to describe the plastic properties of the material. The Norton's power law is used to describe the viscous properties. In the plastic flow region, the irreversible deformation rates are composed of plastic deformation rates and creep deformation rates. The dependencies required to determine the rotational speed at which plastic deformation initiates in the cylinder material are derived from the elastic deformation solution. A system of integro-differential equations is compiled to find the displacements and stresses in the cylinder material for the specified rotational speeds and accumulated irreversible deformations. Numerical calculations show that the presence of creep deformations leads to a later initiation of plastic flow, a reduction in plastic deformation rates, and a decrease in the plastic flow influence area.
Keywords: elasticity, plasticity, creep deformation, rotating cylinder, thick-walled tube, viscoplasticity, plain strain, small strain.
@article{VSGTU_2023_27_1_a5,
     author = {S. V. Firsov},
     title = {The influence of creep deformations on the subsequent plastic flow in a material of rotating cylinde},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {102--118},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a5/}
}
TY  - JOUR
AU  - S. V. Firsov
TI  - The influence of creep deformations on the subsequent plastic flow in a material of rotating cylinde
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 102
EP  - 118
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a5/
LA  - ru
ID  - VSGTU_2023_27_1_a5
ER  - 
%0 Journal Article
%A S. V. Firsov
%T The influence of creep deformations on the subsequent plastic flow in a material of rotating cylinde
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 102-118
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a5/
%G ru
%F VSGTU_2023_27_1_a5
S. V. Firsov. The influence of creep deformations on the subsequent plastic flow in a material of rotating cylinde. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 102-118. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a5/

[1] Begun A. S., Burenin A. A., Kovtanyuk L. V., “Large irreversible deformations under conditions of changing mechanisms of their formation and the problem of definition of plastic potentials”, Dokl. Phys., 61:9 (2016), 463–466 | DOI | DOI

[2] Burenin A. A., Kovtanyuk L. V., Bol'shie neobratimye deformatsii i uprugoe posledeistvie [Large Irreversible Deformations and Elastic Aftereffect], Dal'nauka, Vladivostok, 2013, 312 pp. (In Russian)

[3] Begun A. S., Kovtanyuk L. V., Burenin A. A., Lemza A. O., “On the mechanisms of production of large irreversible strains in materials with elastic, viscous and plastic properties”, Arch. Appl. Mech., 90:4 (2020), 829–845 | DOI

[4] Prokudin A. N., Firsov S. V., “Antiplane strain of hardening elastoviscoplastic medium”, J. Siberian Federal Univ. Math. Phys., 11:4 (2018), 399–410 | DOI

[5] Burenin A. A., Galimzyanova K. N., Kovtanyuk L. V., Panchenko G. L., “Matching growth mechanisms of irreversible deformation of a hollow sphere under uniform compression”, Dokl. Phys., 63:10 (2018), 407–410 | DOI | DOI

[6] Firsov S. V., Prokudin A. N., Burenin A. A., “Creep and plastic flow in a rotating cylinder with a rigid inclusion”, J. Appl. Industr. Math., 13:4 (2019), 642–652 | DOI | DOI

[7] Rabotnov Yu. N., Creep Problems in Structural Members, North-Holland Publ. Co., Amsterdam, London, 1969, xiv+822 pp. | Zbl

[8] Gamer U., Lance R. H., “Stress distribution in a rotating elastic-plastic tube”, Acta Mech., 50:1–2 (1983), 1–8 | DOI | Zbl

[9] Gamer U., Mack W., Varga I., “Rotating elastic-plastic solid shaft with fixed ends”, Int. J. Eng. Sci., 35:3 (1997), 253–267 | DOI | Zbl

[10] Antoni N., “Contact separation and failure analysis of a rotating thermo-elastoplastic shrink-fit assembly”, Appl. Math. Mod., 37:4 (2013), 2352–2363 | DOI | Zbl

[11] Mack W., Plöchl M., “Transient heating of a rotating elastic–plastic shrink fit”, Int. J. Eng. Sci., 38:8 (2000), 921–938 | DOI

[12] Prokudin A. N., “Exact elastoplastic analysis of a rotating cylinder with a rigid inclusion under mechanical loading and unloading”, ZAMM, 100:3 (2020), e201900213 | DOI

[13] Prokudin A. N., Burenin A. A., “Elastoplastic analysis of a rotating solid shaft made of linear hardening material”, Mech. Solids, 56:7 (2021), 1243–1258 | DOI | DOI | Zbl

[14] Begun A. S., Burenin A. A., Kovtanyuk L. V., Prokudin A. N., “Irreversible deformation of a rotating disk having angular acceleration”, Acta Mech., 232:5 (2021), 1917–1931 | DOI | Zbl

[15] Prokudin A. N., Firsov S. V., “Elastoplastic deformation of a rotating hollow cylinder with a rigid casing”, PNRPU Mechanics Bulletin, 2019, no. 4, 120–135 (In Russian) | DOI

[16] Prokudin A. N., “Elastic-plastic analysis of rotating solid shaft by maximum reduced stress yield criterion”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:1 (2020), 74–94 (In Russian) | DOI | Zbl

[17] Burenin A. A., Tkacheva A. V., Shcherbatyuk G. A., “Calculation of the unsteady thermal stresses in elastoplastic solids”, J. Appl. Mech. Tech. Phys., 59:7 (2018), 1197–1210 | DOI | DOI | Zbl

[18] Burenin A. A., Tkacheva A. V., “Evolution of temperature stresses in the Gadolin problem of assembling a two-layer elastoplastic pipe”, PNRPU Mechanics Bulletin, 2020, no. 3, 20–31 (In Russian) | DOI

[19] Burenin A. A., Tkacheva A. V., “Piecewise linear plastic potentials as a tool for calculating plane transient temperature stresses”, Mech. Solids, 55:6 (2020), 791–799 | DOI | DOI

[20] Bykovtsev G. I., Ivlev D. D., Teoriia plastichnosti [Theory of Plasticity], Dal'nauka, Vladivostok, 1998, 528 pp. (In Russian)

[21] Mosolov P. P., Myasnikov V. P., Mekhanika zhestkoplasticheskikh sred [Mechanics of Rigidly Plastic Media], Nauka, Moscow, 1988, 208 pp. (In Russian)

[22] Kovtanyuk L. V., Shitikov A. V., “On the theory of finite elastoplastic deformations of materials taking into account temperature and reological effects”, Vestn. FEB RAS, 2006, no. 4, 87–93 (In Russian)

[23] Norton F. H., The Creep of Steel at High Temperatures, Classic Reprint Series, Forgotten Books, London, 2017, 102 pp.

[24] Firsov S. V., “Irreversible Deformations of a Rotating Cylinder”, Izv. Altai State Univ., 102:4 (2018), 114–117 (In Russian) | DOI

[25] Prokudin A. N., Firsov S. V., “Viscoplastic flow in a rotating hollow cylinder”, Dal'nevost. Mat. Zh., 18:2 (2018), 242–260 (In Russian) | Zbl

[26] Burenin A. A., Tkacheva A. V., “Assembly of a two-layered metal pipe by using shrink fit”, Mech. Solids, 54:4 (2019), 559–569 | DOI | DOI

[27] Firsov S. V., “Plastic and creep deformations of thick-walled cylinder with a rigid casing under internal pressure”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021), 696–715 (In Russian) | DOI | Zbl

[28] Prokudin A. N., Firsov S. V., “Creep analysis of rotating cylinder with free ends”, Vestn. Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost., 2018, no. 1 (35), 63–73 (In Russian)