Lagrange's representation of the quantum evolution of~matter fields
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 50-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a quantum path integral can be represented as a functional of the unique path that satisfies the principle of least action. The concept of path will be used, which implies the parametric dependence of the coordinates of a point on time $x(t)$, $y(t)$, $z(t)$. On this basis, the material fields, which are identified with a quantum particle, are represented as a continuous set of individual particles, the mechanical motion of which determines the spatial fields of the corresponding physical quantities. The wave function of a stationary state is the complex density of matter field individual particles. The modulus of complex density sets the density of matter normalized in one way or another at a given point in space, and the phase factor determines the result of the superposition of material fields in it. This made it possible to transform the integral equation of quantum evolution to the Lagrange's representation. By using the description of a quantum harmonic oscillator as an example, this approach is verified. EPR-type experiment is described in detail, and the possibility of the faster-then light communication is proved, as well as the possible rules of thumb of this communication are proposed.
Keywords: path integrals, matter field, nonlocality, quantum evolution in physical space, Lagrange's and Euler's representations, quantum dynamics of a closed system.
@article{VSGTU_2023_27_1_a2,
     author = {A. Yu. Samarin and A. M. Shterenberg},
     title = {Lagrange's representation of the quantum evolution of~matter fields},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {50--63},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a2/}
}
TY  - JOUR
AU  - A. Yu. Samarin
AU  - A. M. Shterenberg
TI  - Lagrange's representation of the quantum evolution of~matter fields
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 50
EP  - 63
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a2/
LA  - ru
ID  - VSGTU_2023_27_1_a2
ER  - 
%0 Journal Article
%A A. Yu. Samarin
%A A. M. Shterenberg
%T Lagrange's representation of the quantum evolution of~matter fields
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 50-63
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a2/
%G ru
%F VSGTU_2023_27_1_a2
A. Yu. Samarin; A. M. Shterenberg. Lagrange's representation of the quantum evolution of~matter fields. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 50-63. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a2/

[1] Schrödinger E., “Der stetige Übergang von der Mikro- zur Makromechanik”, Naturwissenschaften, 14 (1926), 664–666 | DOI

[2] Bell J., “Against 'measurement'”, Physics World, 3:8 (1990), 33–40 | DOI

[3] Einstein A., Podolsky B., Rosen N., “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev., 47:10 (1935), 777–780 10.1103/PhysRev.47.777 | Zbl

[4] Samarin A. Yu., “Nonlinear dynamics of open quantum systems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018), 214–224 | DOI | Zbl

[5] Clauser J. F., Horne M. A., Shimony A., Holt R. A., “Proposed experiment to test local hidden-variable theories”, Phys. Rev. Lett., 23:15 (1969), 880–883 | DOI | Zbl

[6] Freedman S. J., Clauser J. F., “Experimental test of local hidden-variable theories”, Phys. Rev. Lett., 28:14 (1972), 938–941 | DOI

[7] Aspect A., Grangier P., Roger G., “Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A new violation of Bell's inequalities”, Phys. Rev. Lett., 49:2 (1982), 91–94 10.1103/PhysRevLett.49.91

[8] Feynman R. P., “Space-time approach to non-relativistic quantum mechanics”, Rev. Mod. Phys., 20:2 (1948), 367–387 | DOI | Zbl

[9] Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals, Dover Publ., Mineola, NY, 2010, xii+371 pp. | Zbl

[10] Zinn-Justin J., Path Integrals in Quantum Mechanics, Oxford Univ. Press, Oxford, 2005, xiii+318 pp. | Zbl

[11] Samarin A. Yu., “Quantum evolution in terms of mechanical motion”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:2 (2021), 393–401 | DOI | Zbl

[12] Samarin A. Yu., “Quantum evolution as a usual mechanical motion of peculiar continua”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:1 (2020), 7–21 | DOI | Zbl

[13] MacColl L. A., “Note on the transmission and reflection of wave packets by potential barriers”, Phys. Rev., 40:4 (1932), 621–626 | DOI | Zbl

[14] Hartman T. E., “Tunneling of a wave packet”, J. Appl. Phys., 33:12 (1962), 3427–3433 | DOI

[15] Steinberg A. M., “How much time does a tunneling particle spend in the barrier region?”, Phys. Rev. Lett., 74:13 (1995), 2405–2409 | DOI

[16] Kac M., Probability and Related Topics in Physical Sciences, Interscience Publ., New York, 1959, xiii+266 pp. | MR | Zbl