Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_1_a1, author = {R. S. Saks}, title = {A set of {Sobolev} spaces and boundary-value problems for the curl and gradient-of-divergence operators}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {23--49}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a1/} }
TY - JOUR AU - R. S. Saks TI - A set of Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 23 EP - 49 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a1/ LA - ru ID - VSGTU_2023_27_1_a1 ER -
%0 Journal Article %A R. S. Saks %T A set of Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 23-49 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a1/ %G ru %F VSGTU_2023_27_1_a1
R. S. Saks. A set of Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 23-49. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a1/
[1] Sobolev S. L., Cubature Formulas and Modern Analysis: An introduction, Gordon and Breach Science Publ., Montreux, 1992, xvi+379 pp. | Zbl | Zbl
[2] Mikhailov V. P., Partial Differential Equations, Mir, Moscow, 1978, 397 pp.
[3] Solonnikov V. A., Ural'tseva N. N., “Sobolev spaces”, Izbrannye glavy analiza i vysshei algebry [Selected Chapters of Analysis and Higher Algebra], Leningrad State Univ., Leningrad, 1981, 129–196 pp. (In Russian)
[4] Weyl H., “The method of orthogonal projection in potential theory”, Duke Math. J., 7:1 (1940), 411–444 | DOI | Zbl
[5] Sobolev S. L., “On a new problem of mathematical physics”, Izv. Akad. Nauk SSSR Ser. Mat., 18:1 (1954), 3–50 (In Russian) | MR | Zbl
[6] Yoshida Z., Giga Y., “Remarks on spectra of operator rot”, Math. Z., 204 (1990), 235–245 | DOI
[7] Borchers W., Sohr H., “On the equations $\text{div} u=f$ and $\text{rot} v=g$ with zero boundary conditions”, Hokkaido Math. J., 19:1 (1990), 67–87 | DOI
[8] R. S. Saks, “The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 2(31), 131–146 (In Russian) | DOI
[9] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flows, Gordon and Breach, New York, 1969, xviii+224 pp.
[10] Fridrichs K., “Differertial form on Riemannian manifolds”, Comm. Pure Appl. Math., 8:4 (1955), 551–590 | DOI
[11] Kochin N. E., Kibel' I. A., Roze N.V., Teoreticheskaia gidromekhanika. Ch. 2 \rm [Theoretical Hydromechanics, Vol. 2], Fizmatgiz, Moscow, 1963, 728 pp. (In Russian)
[12] Bykhovskii É. B., Smirnov N. V., “Orthogonal decomposition of the space of vector functions square-summable on a given domain, and the operators of vector analysis”, Mathematical problems of hydrodynamics and magnetohydrodynamics for a viscous incompressible fluid, Collected papers, Trudy Mat. Inst. Steklov., 59, Acad. Sci. USSR, Moscow–Leningrad, 1960, 5–36 (In Russian) | MR | Zbl
[13] Morrey C. B., “Multiple Integrals in the Calculus of Variations”, Classics in Mathematics, Springer, Berlin, Heidelberg, New York, 1966, xi+506 pp. | DOI
[14] Schwartz L., Kompleksnye mnogoobraziia. Ellipticheskie uravneniia s chastnymi proizvodnymi [Complex Analytic Manifolds. Elliptic Partial Differential Equations], Mir, Moscow, 1964, 212 pp. (In Russian)
[15] Volevich L. R., “Solubility of boundary value problems for general elliptic systems”, Mat. Sb. (N.S.), 68(110):3 (1965), 373–416 (In Russian) | MR | Zbl
[16] Solonnikov V. A., “Overdetermined elliptic boundary value problems”, Boundary-value problems of mathematical physics and related problems of function theory. Part 5, Zap. Nauchn. Sem. LOMI, 21, “Nauka”, Leningrad. Otdel., Leningrad, 1971, 112–158 (In Russian) | MR | Zbl
[17] Saks R. S., Boundary-value problems for elliptic systems of differential equations, Novosibirsk State Univ., Novosibirsk, 1975, 162 pp. (In Russian)
[18] Temam R. I., Navier–Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, 1984 | DOI
[19] Zorich V. A., Mathematical analysis II, Springer, Berlin, 2016, xx+720 pp. | Zbl
[20] Vainberg B. R., Grushin V. V., “Uniformly nonelliptic problems. I”, Math. USSR-Sb., 1:4 (1967), 543–568 | DOI | MR | Zbl
[21] Saks R. S., “Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 249–274 (In Russian) | DOI
[22] Saks R. S., “Operator $\nabla \,\text{\rm div}$ and Sobolev spaces”, Dinamicheskie Sistemy, 8:4 (2018), 385–407 (In Russian)
[23] Vladimirov V. S., Equations of Mathematical Physics, Marcel Dekker, New York, 1971
[24] Saks R. S., “Solving of spectral problems for curl and Stokes operators”, Ufa Math. J., 5:2 (2013), 63–81 | DOI | MR
[25] Woltjer L., “A theorem on force-free magnetic fields”, Proc. Nat. Acad. Sci., 44 (1958), 489-491 | DOI
[26] Cantarella J., DeTurck D., Gluck H., Teytel M., “The spectrum of the $\operatorname{curl}$ operator on spherically symmetric domains”, Physics of Plasmas, 7 (2000), 2766–2775 | DOI
[27] Woltjer L., “The Crab Nebula”, Bull. Astron. Inst. Netherlands, 14 (1958), 39–80
[28] Islamov G. G., “On a class of vector fields”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 680–696 (In Russian) | DOI | Zbl
[29] Chandrasekhar S., Kendall P. C., “On force-free magnetic fields”, Astrophys. J., 126 (1957), 457–460 | DOI
[30] Montgomery D., Turner L., Vahala G., “Three-dimentional magnetohydrodyamic turbulence in cylindrical geometry”, Phys. Fluids., 21:5 (1978), 757–764 | DOI
[31] Saks R. S., Islamov G. G., “Eigenfunctions of the curl operator in $\mathbf{L}_2(G)$”, Actual Problems in Theory of Partial Differential Equations dedicated to the centenary of Andrey V. Bitzadze, Abstracts (Russia, 16–18 June, 2016), Moscow State Univ., Moscow, 2016, 21–23