A set of Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 23-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We will consider the scale of the Sobolev spaces $\mathbf{H}^{m}(G)$ vector fields in a bounded domain $G$ of $\mathbb{R}^3$ with a smooth boundary of $\Gamma$. The gradient-of-divergence and the rotor-of-rotor operators ($\nabla \,\text{div}$ and $ \text{rot}^2$) and their powers are analogous to the scalar operator $\Delta^m$ in $\mathbb{R}^3$. They generate spaces $ \mathbf{A}^{2k}(G)$ and $\mathbf{W}^m(G)$ potential and vortex fields; where the numbers $k$, $m>0$ are integers. It is proven that $ \mathbf{A}^{2k}(G)$ and $\mathbf{W}^m(G)$ are projections of Sobolev spaces $ \mathbf{H}^{2k}(G) $ and $ \mathbf{H}^{m}(G)$ in subspaces $\mathcal{A}$ and $\mathcal{B}$ in $\mathbf{L}_{2}(G)$. Their direct sums $ \mathbf{A}^{2k}(G) \oplus \mathbf{W}^m(G)$ form a network of spaces. Its elements are classes $ \mathbf{C}(2k, m)\equiv \mathbf{A}^{2k}\oplus \mathbf{W}^m$. We consider at the properties of the spaces $\mathbf{A}^{-m}$ and $\mathbf{W}^{-m}$ and proved their compliance with the spaces $\mathbf{A}^{m}$ and $\mathbf{W}^{m}$. We also consider at the direct sums of $ \mathbf{A}^{k}(G)\oplus \mathbf{W}^m(G)$ for any integer numbers $k$ and $m>0$. This completes the construction of the $\{\mathbf{C}(k, m)\}_{k,m}$ network. In addition, an orthonormal basis has been constructed in the space $\mathbf{L}_{2}(G)$. It consists of the orthogonal subspace $\mathcal{A}$ and $\mathcal{B}$ bases. Its elements are eigenfields of the operators $\nabla\,\text{div}$ and $\text{rot}$. The proof of their smoothness is an important stage in the theory developed. The model boundary value problems for the operators $\text{rot}+\lambda I$, $\nabla\,\text{div}+\lambda I $, their sum, and also for the Stokes operator have been investigated in the network $\{\mathbf{C}(k, m)\}_{k,m}$. Solvability conditions are obtained for the model problems considered.
Mots-clés : Sobolev spaces
Keywords: gradient operator, divergence operator, curl operator, elliptic boundary value problems, spectral problems.
@article{VSGTU_2023_27_1_a1,
     author = {R. S. Saks},
     title = {A set of {Sobolev} spaces and boundary-value problems for the curl and gradient-of-divergence operators},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {23--49},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a1/}
}
TY  - JOUR
AU  - R. S. Saks
TI  - A set of Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 23
EP  - 49
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a1/
LA  - ru
ID  - VSGTU_2023_27_1_a1
ER  - 
%0 Journal Article
%A R. S. Saks
%T A set of Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 23-49
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a1/
%G ru
%F VSGTU_2023_27_1_a1
R. S. Saks. A set of Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 23-49. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a1/

[1] Sobolev S. L., Cubature Formulas and Modern Analysis: An introduction, Gordon and Breach Science Publ., Montreux, 1992, xvi+379 pp. | Zbl | Zbl

[2] Mikhailov V. P., Partial Differential Equations, Mir, Moscow, 1978, 397 pp.

[3] Solonnikov V. A., Ural'tseva N. N., “Sobolev spaces”, Izbrannye glavy analiza i vysshei algebry [Selected Chapters of Analysis and Higher Algebra], Leningrad State Univ., Leningrad, 1981, 129–196 pp. (In Russian)

[4] Weyl H., “The method of orthogonal projection in potential theory”, Duke Math. J., 7:1 (1940), 411–444 | DOI | Zbl

[5] Sobolev S. L., “On a new problem of mathematical physics”, Izv. Akad. Nauk SSSR Ser. Mat., 18:1 (1954), 3–50 (In Russian) | MR | Zbl

[6] Yoshida Z., Giga Y., “Remarks on spectra of operator rot”, Math. Z., 204 (1990), 235–245 | DOI

[7] Borchers W., Sohr H., “On the equations $\text{div} u=f$ and $\text{rot} v=g$ with zero boundary conditions”, Hokkaido Math. J., 19:1 (1990), 67–87 | DOI

[8] R. S. Saks, “The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 2(31), 131–146 (In Russian) | DOI

[9] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flows, Gordon and Breach, New York, 1969, xviii+224 pp.

[10] Fridrichs K., “Differertial form on Riemannian manifolds”, Comm. Pure Appl. Math., 8:4 (1955), 551–590 | DOI

[11] Kochin N. E., Kibel' I. A., Roze N.V., Teoreticheskaia gidromekhanika. Ch. 2 \rm [Theoretical Hydromechanics, Vol. 2], Fizmatgiz, Moscow, 1963, 728 pp. (In Russian)

[12] Bykhovskii É. B., Smirnov N. V., “Orthogonal decomposition of the space of vector functions square-summable on a given domain, and the operators of vector analysis”, Mathematical problems of hydrodynamics and magnetohydrodynamics for a viscous incompressible fluid, Collected papers, Trudy Mat. Inst. Steklov., 59, Acad. Sci. USSR, Moscow–Leningrad, 1960, 5–36 (In Russian) | MR | Zbl

[13] Morrey C. B., “Multiple Integrals in the Calculus of Variations”, Classics in Mathematics, Springer, Berlin, Heidelberg, New York, 1966, xi+506 pp. | DOI

[14] Schwartz L., Kompleksnye mnogoobraziia. Ellipticheskie uravneniia s chastnymi proizvodnymi [Complex Analytic Manifolds. Elliptic Partial Differential Equations], Mir, Moscow, 1964, 212 pp. (In Russian)

[15] Volevich L. R., “Solubility of boundary value problems for general elliptic systems”, Mat. Sb. (N.S.), 68(110):3 (1965), 373–416 (In Russian) | MR | Zbl

[16] Solonnikov V. A., “Overdetermined elliptic boundary value problems”, Boundary-value problems of mathematical physics and related problems of function theory. Part 5, Zap. Nauchn. Sem. LOMI, 21, “Nauka”, Leningrad. Otdel., Leningrad, 1971, 112–158 (In Russian) | MR | Zbl

[17] Saks R. S., Boundary-value problems for elliptic systems of differential equations, Novosibirsk State Univ., Novosibirsk, 1975, 162 pp. (In Russian)

[18] Temam R. I., Navier–Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, 1984 | DOI

[19] Zorich V. A., Mathematical analysis II, Springer, Berlin, 2016, xx+720 pp. | Zbl

[20] Vainberg B. R., Grushin V. V., “Uniformly nonelliptic problems. I”, Math. USSR-Sb., 1:4 (1967), 543–568 | DOI | MR | Zbl

[21] Saks R. S., “Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:2 (2020), 249–274 (In Russian) | DOI

[22] Saks R. S., “Operator $\nabla \,\text{\rm div}$ and Sobolev spaces”, Dinamicheskie Sistemy, 8:4 (2018), 385–407 (In Russian)

[23] Vladimirov V. S., Equations of Mathematical Physics, Marcel Dekker, New York, 1971

[24] Saks R. S., “Solving of spectral problems for curl and Stokes operators”, Ufa Math. J., 5:2 (2013), 63–81 | DOI | MR

[25] Woltjer L., “A theorem on force-free magnetic fields”, Proc. Nat. Acad. Sci., 44 (1958), 489-491 | DOI

[26] Cantarella J., DeTurck D., Gluck H., Teytel M., “The spectrum of the $\operatorname{curl}$ operator on spherically symmetric domains”, Physics of Plasmas, 7 (2000), 2766–2775 | DOI

[27] Woltjer L., “The Crab Nebula”, Bull. Astron. Inst. Netherlands, 14 (1958), 39–80

[28] Islamov G. G., “On a class of vector fields”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 680–696 (In Russian) | DOI | Zbl

[29] Chandrasekhar S., Kendall P. C., “On force-free magnetic fields”, Astrophys. J., 126 (1957), 457–460 | DOI

[30] Montgomery D., Turner L., Vahala G., “Three-dimentional magnetohydrodyamic turbulence in cylindrical geometry”, Phys. Fluids., 21:5 (1978), 757–764 | DOI

[31] Saks R. S., Islamov G. G., “Eigenfunctions of the curl operator in $\mathbf{L}_2(G)$”, Actual Problems in Theory of Partial Differential Equations dedicated to the centenary of Andrey V. Bitzadze, Abstracts (Russia, 16–18 June, 2016), Moscow State Univ., Moscow, 2016, 21–23