Analysis on generalized Clifford algebras
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 7-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study the analysis related to generalized Clifford algebras $\mathcal{C}_n(\underline{a})$, where $\underline{a}$ is a non-zero vector. If $\{e_1,\dots,e_n\}$ is an orthonormal basis, the multiplication is defined by relations \begin{align*} e_j^2=a_je_j-1,\\ e_ie_j+e_je_i=a_ie_j+a_je_i, \end{align*} for $a_j=e_j\cdot\m{a}$. The case $\underline{a}=\underline{0}$ corresponds to the classical Clifford algebra. We define the Dirac operator as usual by $D=\sum_je_j\partial_{x_j}$ and define regular functions as its null solution. We first study the algebraic properties of the algebra. Then we prove the basic formulas for the Dirac operator and study the properties of regular functions.
Keywords: Clifford–Kanzaki algebra, generalized Clifford algebra, Dirac operator, regular function.
@article{VSGTU_2023_27_1_a0,
     author = {H. Orelma},
     title = {Analysis on generalized {Clifford} algebras},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {7--22},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a0/}
}
TY  - JOUR
AU  - H. Orelma
TI  - Analysis on generalized Clifford algebras
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 7
EP  - 22
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a0/
LA  - en
ID  - VSGTU_2023_27_1_a0
ER  - 
%0 Journal Article
%A H. Orelma
%T Analysis on generalized Clifford algebras
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 7-22
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a0/
%G en
%F VSGTU_2023_27_1_a0
H. Orelma. Analysis on generalized Clifford algebras. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 7-22. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a0/

[1] Yaglom I. M., Complex Numbers and Their Application in Geometry, Fizmatgiz, Moscow, 1963, 192 pp. (In Russian) | Zbl

[2] Kanzaki T., “On the quadratic extensions and the extended Witt ring of a commutative ring”, Nagoya Math. J., 49 (1973), 127–141 | DOI | Zbl

[3] Helmstetter J., Micali A., Revoy P., “Generalized quadratic modules”, Afr. Mat., 23:1 (2012), 53–84 | DOI | Zbl

[4] Tutschke W., Vanegas C. J., “Clifford algebras depending on parameters and their applications to partial differential equations”, Some Topics on Value Distribution and Differentiability in Complex and $p$-Adic Analysis, Mathematics Monograph Series, 11, eds. A. Escassut, W. Tutschke, C. C. Yang, Science Press, Beijing, 2008, 430–450 | Zbl

[5] Bourbaki N., Éléments de mathématique. Algèbre. Chapitre 9, Springer, Berlin, 2007, 211 pp. | Zbl

[6] Chevalley C., Collected Works, v. 2, The algebraic theory of spinors and Clifford algebras, eds. P. Cartier, C. Chevalley, Springer, Berlin, 1997, xiv+214 pp. | Zbl

[7] Delanghe R., Sommen F., Souček V., Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator, Mathematics and its Applications, 53, Kluwer Academic Publ., Dordrecht, 1992, xvii+485 pp. | Zbl

[8] Gürlebeck K., Habetha K., Sprößig W., Funktionentheorie in der Ebene und im Raum, Grundstudium Mathematik, Birkhäuser, Basel, 2006, xiii+406 pp. | Zbl

[9] Müller C., “Properties of the legendre functions”, Spherical Harmonics, Lecture Notes in Mathematics, 17, Springer, Berlin, 1966, 29–37 | DOI