Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_1_a0, author = {H. Orelma}, title = {Analysis on generalized {Clifford} algebras}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {7--22}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a0/} }
TY - JOUR AU - H. Orelma TI - Analysis on generalized Clifford algebras JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 7 EP - 22 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a0/ LA - en ID - VSGTU_2023_27_1_a0 ER -
H. Orelma. Analysis on generalized Clifford algebras. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 7-22. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a0/
[1] Yaglom I. M., Complex Numbers and Their Application in Geometry, Fizmatgiz, Moscow, 1963, 192 pp. (In Russian) | Zbl
[2] Kanzaki T., “On the quadratic extensions and the extended Witt ring of a commutative ring”, Nagoya Math. J., 49 (1973), 127–141 | DOI | Zbl
[3] Helmstetter J., Micali A., Revoy P., “Generalized quadratic modules”, Afr. Mat., 23:1 (2012), 53–84 | DOI | Zbl
[4] Tutschke W., Vanegas C. J., “Clifford algebras depending on parameters and their applications to partial differential equations”, Some Topics on Value Distribution and Differentiability in Complex and $p$-Adic Analysis, Mathematics Monograph Series, 11, eds. A. Escassut, W. Tutschke, C. C. Yang, Science Press, Beijing, 2008, 430–450 | Zbl
[5] Bourbaki N., Éléments de mathématique. Algèbre. Chapitre 9, Springer, Berlin, 2007, 211 pp. | Zbl
[6] Chevalley C., Collected Works, v. 2, The algebraic theory of spinors and Clifford algebras, eds. P. Cartier, C. Chevalley, Springer, Berlin, 1997, xiv+214 pp. | Zbl
[7] Delanghe R., Sommen F., Souček V., Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator, Mathematics and its Applications, 53, Kluwer Academic Publ., Dordrecht, 1992, xvii+485 pp. | Zbl
[8] Gürlebeck K., Habetha K., Sprößig W., Funktionentheorie in der Ebene und im Raum, Grundstudium Mathematik, Birkhäuser, Basel, 2006, xiii+406 pp. | Zbl
[9] Müller C., “Properties of the legendre functions”, Spherical Harmonics, Lecture Notes in Mathematics, 17, Springer, Berlin, 1966, 29–37 | DOI