Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_4_a8, author = {E. K. Kichaev and P. E. Kichaev}, title = {The non-uniaxial creep under complex loading}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {777--788}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a8/} }
TY - JOUR AU - E. K. Kichaev AU - P. E. Kichaev TI - The non-uniaxial creep under complex loading JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 777 EP - 788 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a8/ LA - ru ID - VSGTU_2022_26_4_a8 ER -
%0 Journal Article %A E. K. Kichaev %A P. E. Kichaev %T The non-uniaxial creep under complex loading %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 777-788 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a8/ %G ru %F VSGTU_2022_26_4_a8
E. K. Kichaev; P. E. Kichaev. The non-uniaxial creep under complex loading. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 4, pp. 777-788. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a8/
[1] Samarin Yu. P., Uravneniia sostoianiia materialov so slozhnymi reologicheskimi svoistvami [Equation of State of Materials with Complex Rheological Properties], Kuibyshev State Univ., Kuibyshev, 1979, 84 pp. (In Russian)
[2] Radchenko V. P., Samarin Yu. P., Khrenov S. M., “Determining equations for the materials in the presence of three stages of creep”, Dokl. Akad. Nauk SSSR, 288:3 (1986), 571–574 (In Russian)
[3] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological Deformation and Fracture of Materials and Structural Elements], Mashinostroenie-1, Moscow, 2004, 264 pp. (In Russian)
[4] Radchenko V. P., Kichaev P. E., Energeticheskaia kontseptsiia polzuchesti i vibropolzuchesti metallov [Energy Concept of Creeping and Vibrocreep of Metals], Samara State Technical Univ., Samara, 2011, 157 pp. (In Russian)
[5] Rabotnov Yu. N., Creep Problems in Structural Members, North-Holland Publ., Amsterdam, London, 1969, xiv+822 pp. | Zbl
[6] Malinin N. N., Polzuchest' v obrabotke metallov [Creep in Treated Metals], Mashinostroenie, Moscow, 1985, 216 pp. (In Russian)
[7] Lokoschenko A. M., Shesterikov S. A. et al., Zakonomernosti polzuchesti i dlitel'noi prochnosti [Regularities of Creep and Long-Term Strength], ed. S. A. Shesterikov, Mashinostroenie, Moscow, 1983, 101 pp. (In Russian)
[8] Samarin Yu. P., Kichaev E. K., “Peculiarities of creep of metals in tension with reversible torsion”, Prochnost' materialov i elementov konstruktsii pri slozhnom napriazhennom sostoianii [Strength of Materials and Structural Elements in a Complex Stress State], Nauk. Dumka, Kiev, 1977, 224–238 (In Russian)
[9] Kichaev E. K., Fayn G. M., “Creep of drill pipes from D16T alloy under conditions of ultra-deep drilling”, Prochnost' materialov i elementov konstruktsii pri slozhnom napriazhennom sostoianii [Strength of Materials and Structural Elements in a Complex Stress State], Nauk. Dumka, Kiev, 1978, 232–237 (In Russian)
[10] Lokoshchenko A. M., Fomin L. V., “Delayed fracture of plates under creep condition in unsteady complex stress state in the presence of aggressive medium”, Appl. Math. Model., 60 (2018), 478–489 | DOI
[11] Wen J.-F., Tu S.-T., Xuan F.-Z., Zhang X.-W., Gao X.-L., “Effects of stress level and stress state on creep ductility: Evaluation of different models”, J. Mater. Sci. Techn., 32:8 (2016), 695–704 | DOI
[12] Radchenko V. P., Saushkin M. N., Polzuchest' i relaksatsiia ostatochnykh napriazhenii v uprochnennykh konstruktsiiakh [Creep and Relaxation of Residual Stresses in Reinforced Structures], Mashinostroenie-1, Moscow, 2005, 226 pp. (In Russian)
[13] Samarin Yu. P., “Derivation of exponential approximations for creep curves by the method of successive isolation of exponential terms”, Strength Mater., 6:9 (1974), 1062–1066 | DOI