Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_4_a6, author = {A. F. Zausaev and M. A. Romanyuk}, title = {Comparison of the orbital elements of major planets, the {Moon} and the {Sun} using various mathematical models on the time interval with 1600 to 2200}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {738--763}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a6/} }
TY - JOUR AU - A. F. Zausaev AU - M. A. Romanyuk TI - Comparison of the orbital elements of major planets, the Moon and the Sun using various mathematical models on the time interval with 1600 to 2200 JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 738 EP - 763 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a6/ LA - ru ID - VSGTU_2022_26_4_a6 ER -
%0 Journal Article %A A. F. Zausaev %A M. A. Romanyuk %T Comparison of the orbital elements of major planets, the Moon and the Sun using various mathematical models on the time interval with 1600 to 2200 %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 738-763 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a6/ %G ru %F VSGTU_2022_26_4_a6
A. F. Zausaev; M. A. Romanyuk. Comparison of the orbital elements of major planets, the Moon and the Sun using various mathematical models on the time interval with 1600 to 2200. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 4, pp. 738-763. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a6/
[1] Maxwell J. C., Izbrannye sochineniia po teorii elektromagnitnogo polia [Selected Papers on Electromagnetic Field Theory], Gostekhizdat, Moscow, 1952, 687 pp. (In Russian)
[2] Chebotarev G. A., Analytical and Numerical Methods of Celestial Mechanics, Modern Analytic and Computational Methods in Science and Mathematics, 9, American Elsevier Publishing Co., Inc., New York, 1967, xviii+331 pp. | MR | Zbl
[3] Subbotin M. F., Vvedenie v teoreticheskuiu astronomiiu [Introduction to Theoretical Astronomy], Nauka, Moscow, 1968, 800 pp. (In Russian)
[4] Bogorodsky A. F., Vsemirnoe tiagotenie [Universal Gravitation], Nauk. Dumka, Kiev, 1971, 352 pp. (In Russian)
[5] Brumberg V. A., Reliativistskaia nebesnaia mekhanika [Relativistic Celestial Mechanics], Nauka, Moscow, 1972, 384 pp. (In Russian) | MR
[6] Vizgin V. P., “On the discovery of the gravitational field equations by Einstein and Hilbert: new materials”, Phys. Usp., 44:12 (2001), 1283–1298 | DOI | DOI
[7] Dirak P., Printsipy kvantovoi mekhaniki [The Principles of Quantum Mechanics], Nauka, Moscow, 1979, 440 pp. (In Russian) | MR
[8] Feynman R. P., The Development of the Space-Time View of Quantum Electrodynamics, Nobel Lecture, December 11, 1965. Preprint les Prix Nobel en 1965, The Nobel Foundation, Stockholm, 1966 | DOI
[9] Casimir H. B. G., Polder D., “The influence of retardation on the London-van der Waals forces”, Phys. Rev., 73:4 (1948), 360–372 | DOI
[10] Zel'dovich Ya. B., “Vacuum theory: a possible solution to the singularity problem of cosmology”, Sov. Phys. Usp., 24:3 (1981), 216–230 | DOI | DOI
[11] Zausaev A. F., “Theory of motion of $n$ material bodies, based on a new interaction principle”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2006, no. 43, 132–139 | DOI
[12] Zausaev A. F., Zausaev A. A., Matematicheskoe modelirovanie orbital'noi evoliutsii malykh tel Solnechnoi sistemy [Mathematical Modelling of Orbital Evolution of Small Bodies of the Solar System], Mashinostroenie-1, Moscow, 2008, 250 pp. (In Russian)
[13] Zausaev A. F., “The investigation of the motion of planets, the Moon, and the Sun based on a new principle of interaction”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 3(36), 118–131 (In Russian) | DOI | Zbl
[14] Zausaev A. F., “Comparison of the coordinates of the major planets, Moon, and Sun obtained based on a new principle of interaction and of the data bank DE405”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 121–148 | DOI | Zbl
[15] Zausaev A. F., Romanyuk M. A., Chislennye metody v zadachakh matematicheskogo modelirovaniia dvizheniia nebesnykh tel v Solnechnoi sisteme [Numerical Methods in the Problems of Mathematical Modeling of the Motion of Celestial Bodies in the Solar System], Samara State Technical Univ., Samara, 2017, 265 pp. (In Russian)
[16] Newhall X. X., Standish E M., Williams J. G., “DE 102: A numerically integrated ephemeris of the Moon and planets spanning forty-four centuries”, Astron. Astrophys., 125:1 (1983), 150–167 | Zbl
[17] Poincaré J. H., O nauke [About Science], Nauka, Moscow, 1983, 560 pp. (In Russian)
[18] Zausaev A. F., Romanyuk M. A., “Comparison of various mathematical models on the example of solving the equations of the movement of large planets and the Moon”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:1 (2019), 152–185 (In Russian) | DOI | Zbl
[19] Standish E. M., JPL Planetary and Lunar Ephemerides, DE405/LE405. Interoffice memorandum: JPL IOM 312. F–98-048, 1998, August 26, 18 pp. ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de405.iom.pdf
[20] Gribkova V. P., Effektivnye metody ravnomernykh priblizhenii, osnovannye na polinomakh Chebysheva [Efficient Methods of Uniform Approximations Based on Chebyshev Polynomials], Sputnik, Moscow, 2017, 194 pp. (In Russian)
[21] Montenbruck O., Pfleger T., Astronomy on the Personal Computer, Springer, Berlin, Heidelberg, 2000, xv+300 pp. | DOI
[22] Khemming R. V., Chislennye metody dlia nauchnykh rabotnikov i inzhenerov [Numerical Methods for Scientists and Engineers], Nauka, Moscow, 1972, 400 pp. (In Russian)
[23] Park R. S., JPL Planetary and Lunar Ephemerides, 2020 https://ssd.jpl.nasa.gov/planets/eph_export.html
[24] Le Verrier U. J., Theorie du movement de Mercure, Annales de l'Observatoire imperial de Paris, 5, Annales de l'Observatoire de Paris. Memoires, Mallet-Bachelier, Paris, 1859, 195 pp.