Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_4_a0, author = {M. Kh. Beshtokov}, title = {Boundary value problems for {Sobolev} type equations of~fractional order with memory effect}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {607--629}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a0/} }
TY - JOUR AU - M. Kh. Beshtokov TI - Boundary value problems for Sobolev type equations of~fractional order with memory effect JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 607 EP - 629 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a0/ LA - ru ID - VSGTU_2022_26_4_a0 ER -
%0 Journal Article %A M. Kh. Beshtokov %T Boundary value problems for Sobolev type equations of~fractional order with memory effect %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 607-629 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a0/ %G ru %F VSGTU_2022_26_4_a0
M. Kh. Beshtokov. Boundary value problems for Sobolev type equations of~fractional order with memory effect. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 4, pp. 607-629. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a0/
[1] Vragov V. N., Kraevye zadachi dlia neklassicheskikh uravnenii matematicheskoi fiziki [Boundary Value Problems for Nonclassical Equations in Mathematical Physics], Novosibirsk State Univ., Novosibirsk, 1983, 84 pp. (In Russian)
[2] Ting T. W., “Parabolic and pseudo-parabolic partial differential equations”, J. Math. Soc. Japan, 21:3 (1969), 440–453 | DOI
[3] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York, 1999, 336 pp. | DOI
[4] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniia sobolevskogo tipa [Linear and Nonlinear Equations of the Sobolev Type], Fizmatlit, Moscow, 2007, 736 pp. (In Russian)
[5] Demidenko G.V., Uspenskii S.V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, CRC Press, Boca Raton, 2003, 632 pp. | DOI
[6] Lions J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires [Some Methods for Solving Nonlinear Boundary Value Problems], Etudes mathematiques, Gauthier-Villars, Paris, 1969, xx+554 pp. (In French) | Zbl
[7] Petrovsky I. G., Lektsii po teorii obyknovennykh differentsial'nykh uravnenii [Lectures on the Theory of Ordinary Differential Equations], Moscow Univ. Press, Moscow, 1984, 296 pp. (In Russian)
[8] Showalter R. E., “The Sobolev equations I”, Appl. Anal., 5:1 (1975), 15–22 | DOI
[9] Showalter R. E., “The Sobolev equations II”, Appl. Anal., 5:2 (1975), 81–99 | DOI
[10] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]”, J. Appl. Math. Mech., 24:5 (1960), 1286–1303 | DOI
[11] Hallaire M., “Le potentiel efficace de l'eau dans le sol en régime de dessèchement”, C. R. Acad. Sci., Paris, 254 (1962), 2047–2049
[12] Hallaire M., “On a theory of moisture-transfer”, Inst. Rech. Agronom., 3 (1964), 60–72
[13] Chudnovsky A. F., Teplofizika pochv [Soil Thermal Physics], Nauka, Moscow, 1976, 353 pp.
[14] Chen P. J., Gurtin M. E., “On a theory of heat conduction involving two temperatures”, J. Appl. Math. Phys. (ZAMP), 19:4 (1968), 614–627 | DOI
[15] Bedanokova S. Yu., “The equation of soil moisture movement and mathematical model of moisture content of the soil layer based on the Hallaire's equation”, Vestn. Adygeisk. Gos. Univ. Ser. 4. Estestv.-Matemat. Tekhn. Nauki, 4 (2007), 68–71 (In Russian)
[16] Alikhanov A. A., “A priori estimates for solutions of boundary value problems for fractional-order equations”, Diff. Equat., 46:5 (2010), 660–666 | DOI
[17] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, J. Comp. Phys., 280 (2015), 424–438 | DOI
[18] Beshtokov M. Kh., “Stability and convergence of difference schemes approximating boundary value problems for loaded Sobolev-type fractional differential equations”, Diff. Equat., 57:12 (2021), 1685–1701 | DOI | DOI
[19] Beshtokov M. Kh., “The third boundary value problem for loaded differential Sobolev type equation and grid methods of their numerical implementation”, IOP Conf. Ser.: Mater. Sci. Eng., 158 (2016), 012019 | DOI
[20] Beshtokov M. Kh., “Boundary value problems for degenerating and nondegenerating Sobolev-type equations with a nonlocal source in differential and difference forms”, Diff. Equat., 54:2 (2018), 250–267 | DOI | DOI
[21] Beshtokov M. Kh., Vogahova V. A., “Nonlocal boundary value problems for a fractional-order convection-diffusion equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019), 459–482 (In Russian) | DOI
[22] Beshtokov M. Kh., “Riemann method for solving non-local boundary value problems for the third order pseudoparabolic equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 4(33), 15–24 (In Russian) | DOI | Zbl
[23] Caputo M., “Linear models of dissipation whose $Q$ is almost frequency independent—II”, Geophys. J. Intern., 13:5 (1967), 529–539 | DOI
[24] Gerasimov A. N., “Generalization of linear deformation laws and their application to problems of internal friction”, Appl. Math. Mech., 12 (1948), 529–539 | Zbl
[25] Ladyzhenskaya O. A., The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences, 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | Zbl | Zbl
[26] Samarskii A. A., Teoriia raznostnykh skhem [Theory of Difference Schemes], Nauka, Moscow, 1983, 616 pp. (In Russian) | Zbl
[27] Samarskii A. A., Gulin A. B., Ustoichivost' raznostnykh skhem [Stability of Difference Schemes], Nauka, Moscow, 1973, 416 pp. (In Russian) | Zbl