On the theory of fourth-rank hemitropic tensors in three-dimensional Euclidean spaces
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 592-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to problems concerning the tensors with constant components, hemitropic tensors and pseudotensors that are of interest from the point of view of micropolar continuum mechanics. The properties and coordinate representations of tensors and pseudotensors with constant components are discussed. Based on an unconventional definition of a hemitropic fourth-rank tensor, a coordinate representations in terms of Kronecker deltas and metric tensors are given. A comparison of an arbitrary hemitropic fourth-rank tensor and a tensor with constant components are discussed. The coordinate representations for constitutive tensors and pseudotensors used in mathematical modeling of linear hemitropic micropolar continuums are given in terms of the metric tensor.The covariant constancy of fourth-rank pseudotensors with constant components and hemitropic tensors is considered and discussed.
Keywords: tensor, fourth-rank tensor, hemitropic, elasticity, tensor with constant components, halfisotropic tensor.
Mots-clés : pseudotensor, constitutive pseudotensor, micropolar
@article{VSGTU_2022_26_3_a9,
     author = {E. V. Murashkin and Yu. N. Radayev},
     title = {On the theory of fourth-rank hemitropic tensors in three-dimensional {Euclidean} spaces},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {592--602},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a9/}
}
TY  - JOUR
AU  - E. V. Murashkin
AU  - Yu. N. Radayev
TI  - On the theory of fourth-rank hemitropic tensors in three-dimensional Euclidean spaces
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 592
EP  - 602
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a9/
LA  - ru
ID  - VSGTU_2022_26_3_a9
ER  - 
%0 Journal Article
%A E. V. Murashkin
%A Yu. N. Radayev
%T On the theory of fourth-rank hemitropic tensors in three-dimensional Euclidean spaces
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 592-602
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a9/
%G ru
%F VSGTU_2022_26_3_a9
E. V. Murashkin; Yu. N. Radayev. On the theory of fourth-rank hemitropic tensors in three-dimensional Euclidean spaces. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 592-602. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a9/

[1] Truesdell C., Toupin R., “The classical field theories”, Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, v. III/1, eds. S. Flügge, Springer, Berlin, Göttingen, Heidelberg, 1960, 226–858 | DOI

[2] Truesdell C., Noll W., The Non-Linear Field Theories of Mechanics, Springer, Berlin, Heidelberg, 2004, xxix+602 pp. | DOI

[3] Maugin G. A., Material Inhomogeneities in Elasticity, CRC Press, New York, 1993, 292 pp. | DOI

[4] Mase G. T., Smelser R. E., Mase G. E., Continuum Mechanics for Engineers, CRC Press, Boca Raton, 2009, 398 pp. | DOI

[5] Haupt P., Continuum Mechanics and Theory of Materials, Springer, Berlin, Heidelberg, 2002, xxviii+643 pp. | DOI

[6] Spencer A. J. M., Continuum Mechanics, Dover Publ., Mineola, 2004, 192 pp. | Zbl

[7] Irgens F., Continuum Mechanics, Springer, Berlin, Heidelberg, 2008, xviii+661 pp. | DOI

[8] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, P. Noordhoff, Groningen, 1964, viii+429 pp. | Zbl

[9] Synge J. L., Schild A., Tensor Calculus, Dover Books on Advanced Mathematics, Dover Publ., New York, 1978, xi+324 pp. | Zbl

[10] Schouten J. A., Tensor Analysis for Physicist, Clarendon Press, Oxford, 1954, xii+277 pp. | Zbl

[11] McConnell A. J., Application of Tensor Analysis, Dover Publ., New York, 1957, xii+318 pp. | Zbl

[12] Sokolnikoff I. S., Tensor Analysis. Theory and Applications to Geometry and Mechanics of Continua, Applied Mathematics Series, John Wiley Sons, New York, 1964, xii+361 pp. | Zbl

[13] Jeffreys H., Cartesian Tensors, Cambridge Univ. Press, Cambridge, 1931, vii+93 pp. | Zbl

[14] Jeffreys H., Swirles B., Methods of Mathematical Physics, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 1950, viii+679 pp. | DOI | Zbl

[15] Smith G. F., Rivlin R. S., “The anisotropic tensors”, Quart. Appl. Math., 15:3 (1957), 308–314 | DOI

[16] Lurie A. I., Nelineinaia teoriia uprugosti [Nonlinear Theory of Elasticity], Nauka, Moscow, 1980, 512 pp. (In Rissian)

[17] Radayev Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 504–517 (In Russian) | DOI

[18] Radayev Yu. N., Murashkin E. V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Problems of Strength and Plasticity, 82:4 (2020), 399–412 (In Russian) | DOI

[19] E. V. Murashkin, Yu. N. Radayev, “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424–444 | DOI

[20] Kovalev V. A., Murashkin E. V., Radayev Yu. N., “On the Neuber theory of micropolar elasticity. A pseudotensor formulation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 752–761 | DOI

[21] Murashkin E. V., Radayev Yu. N., “On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021), 457–474 (In Russian) | DOI | Zbl

[22] Radayev Yu. N., Murashkin E. V., “Generalized pseudotensor formulations of the Stokes' integral theorem”, Izv. Saratov Univ. Math. Mech. Inform., 22:2 (2022), 205–215 | DOI

[23] Radayev Yu. N., Murashkin E. V., Nesterov T. K., “On covariant non-constancy of distortion and inversed distortion tensors”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:1 (2022), 36–47 | DOI

[24] Murashkin E. V., Radayev Yu. N., “On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021), 776–786 (In Russian) | DOI | Zbl

[25] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, viii+383 pp. | Zbl