Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_3_a9, author = {E. V. Murashkin and Yu. N. Radayev}, title = {On the theory of fourth-rank hemitropic tensors in three-dimensional {Euclidean} spaces}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {592--602}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a9/} }
TY - JOUR AU - E. V. Murashkin AU - Yu. N. Radayev TI - On the theory of fourth-rank hemitropic tensors in three-dimensional Euclidean spaces JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 592 EP - 602 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a9/ LA - ru ID - VSGTU_2022_26_3_a9 ER -
%0 Journal Article %A E. V. Murashkin %A Yu. N. Radayev %T On the theory of fourth-rank hemitropic tensors in three-dimensional Euclidean spaces %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 592-602 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a9/ %G ru %F VSGTU_2022_26_3_a9
E. V. Murashkin; Yu. N. Radayev. On the theory of fourth-rank hemitropic tensors in three-dimensional Euclidean spaces. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 592-602. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a9/
[1] Truesdell C., Toupin R., “The classical field theories”, Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, v. III/1, eds. S. Flügge, Springer, Berlin, Göttingen, Heidelberg, 1960, 226–858 | DOI
[2] Truesdell C., Noll W., The Non-Linear Field Theories of Mechanics, Springer, Berlin, Heidelberg, 2004, xxix+602 pp. | DOI
[3] Maugin G. A., Material Inhomogeneities in Elasticity, CRC Press, New York, 1993, 292 pp. | DOI
[4] Mase G. T., Smelser R. E., Mase G. E., Continuum Mechanics for Engineers, CRC Press, Boca Raton, 2009, 398 pp. | DOI
[5] Haupt P., Continuum Mechanics and Theory of Materials, Springer, Berlin, Heidelberg, 2002, xxviii+643 pp. | DOI
[6] Spencer A. J. M., Continuum Mechanics, Dover Publ., Mineola, 2004, 192 pp. | Zbl
[7] Irgens F., Continuum Mechanics, Springer, Berlin, Heidelberg, 2008, xviii+661 pp. | DOI
[8] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, P. Noordhoff, Groningen, 1964, viii+429 pp. | Zbl
[9] Synge J. L., Schild A., Tensor Calculus, Dover Books on Advanced Mathematics, Dover Publ., New York, 1978, xi+324 pp. | Zbl
[10] Schouten J. A., Tensor Analysis for Physicist, Clarendon Press, Oxford, 1954, xii+277 pp. | Zbl
[11] McConnell A. J., Application of Tensor Analysis, Dover Publ., New York, 1957, xii+318 pp. | Zbl
[12] Sokolnikoff I. S., Tensor Analysis. Theory and Applications to Geometry and Mechanics of Continua, Applied Mathematics Series, John Wiley Sons, New York, 1964, xii+361 pp. | Zbl
[13] Jeffreys H., Cartesian Tensors, Cambridge Univ. Press, Cambridge, 1931, vii+93 pp. | Zbl
[14] Jeffreys H., Swirles B., Methods of Mathematical Physics, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 1950, viii+679 pp. | DOI | Zbl
[15] Smith G. F., Rivlin R. S., “The anisotropic tensors”, Quart. Appl. Math., 15:3 (1957), 308–314 | DOI
[16] Lurie A. I., Nelineinaia teoriia uprugosti [Nonlinear Theory of Elasticity], Nauka, Moscow, 1980, 512 pp. (In Rissian)
[17] Radayev Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 504–517 (In Russian) | DOI
[18] Radayev Yu. N., Murashkin E. V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Problems of Strength and Plasticity, 82:4 (2020), 399–412 (In Russian) | DOI
[19] E. V. Murashkin, Yu. N. Radayev, “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424–444 | DOI
[20] Kovalev V. A., Murashkin E. V., Radayev Yu. N., “On the Neuber theory of micropolar elasticity. A pseudotensor formulation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 752–761 | DOI
[21] Murashkin E. V., Radayev Yu. N., “On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021), 457–474 (In Russian) | DOI | Zbl
[22] Radayev Yu. N., Murashkin E. V., “Generalized pseudotensor formulations of the Stokes' integral theorem”, Izv. Saratov Univ. Math. Mech. Inform., 22:2 (2022), 205–215 | DOI
[23] Radayev Yu. N., Murashkin E. V., Nesterov T. K., “On covariant non-constancy of distortion and inversed distortion tensors”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:1 (2022), 36–47 | DOI
[24] Murashkin E. V., Radayev Yu. N., “On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021), 776–786 (In Russian) | DOI | Zbl
[25] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, viii+383 pp. | Zbl