Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_3_a7, author = {V. P. Shapeev and L. S. Bryndin and V. A. Belyaev}, title = {The hp-version of the least-squares collocation method with~integral collocation for solving a biharmonic equation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {556--572}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a7/} }
TY - JOUR AU - V. P. Shapeev AU - L. S. Bryndin AU - V. A. Belyaev TI - The hp-version of the least-squares collocation method with~integral collocation for solving a biharmonic equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 556 EP - 572 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a7/ LA - ru ID - VSGTU_2022_26_3_a7 ER -
%0 Journal Article %A V. P. Shapeev %A L. S. Bryndin %A V. A. Belyaev %T The hp-version of the least-squares collocation method with~integral collocation for solving a biharmonic equation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 556-572 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a7/ %G ru %F VSGTU_2022_26_3_a7
V. P. Shapeev; L. S. Bryndin; V. A. Belyaev. The hp-version of the least-squares collocation method with~integral collocation for solving a biharmonic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 556-572. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a7/
[1] Timoshenko S., Woinowsky–Krieger S., Theory of Plates and Shells, McGraw-Hill Book Comp., New York, St. Louis, 1959, xiv+580 pp.
[2] Reddy J. N., Mechanics of Laminated Composite Plates and Shells. Theory and Analysis, CRC Press, Boca Raton, 2011, xxiv+832 pp. | DOI
[3] Chen G., Li Z., Lin P., “A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow”, Adv. Comput. Math., 29:2 (2008), 113–133 | DOI
[4] McLaurin G. W., “A general coupled equation approach for solving the biharmonic boundary value problem”, SIAM J. Numer. Anal., 11:1 (1974), 14–33 | DOI
[5] Mai-Duy N., See H., Tran-Cong T., “A spectral collocation technique based on integrated Chebyshev polynomials for biharmonic problems in irregular domains”, Appl. Math. Model., 33:1 (2009), 284–299 | DOI
[6] Shao W., Wu X., Chen S., “Chebyshev tau meshless method based on the integration-differentiation for Biharmonic-type equations on irregular domain”, Engin. Anal. Bound. Elem., 36:12 (2012), 1787–1798 | DOI
[7] Shao W., Wu X., “An effective Chebyshev tau meshless domain decomposition method based on the integration-differentiation for solving fourth order equations”, Appl. Math. Model., 39:9 (2015), 2554–2569 | DOI
[8] Guo H., Zhang Z., Zou Q., “A $C^0$ linear finite element method for biharmonic problems”, J. Sci. Comput., 74:3 (2018), 1397–1422 | DOI
[9] Golushko S. K., Idimeshev S. V., Shapeev V. P., “Application of collocations and least residuals method to problems of the isotropic plates theory”, Vychisl. Tekhnol., 18:6 (2013), 31–43 (In Russian)
[10] Belyaev V. A., Bryndin L. S., Shapeev V. P., Golushko S. K., “The least squares collocation method with the integral form of collocation equations for bending analysis of isotropic and orthotropic thin plates”, AIP Conf. Proc., 2288 (2020), 030084 | DOI
[11] Belyaev V. A., Bryndin L. S., Golushko S. K., Semisalov B. V., Shapeev V. P., “h-, p-, and hp-versions of the least-squares collocation method for solving boundary value problems for biharmonic equation in irregular domains and their applications”, Comput. Math. Math. Phys., 62:4 (2022), 517–537 | DOI | DOI
[12] Babuška I., Guo B. Q., “The h, p and h-p version of the finite element method; basis theory and applications”, Adv. Eng. Softw., 15:3–4 (1992), 159–174 | DOI
[13] Ramšak M., Škerget L., “A subdomain boundary element method for high-Reynolds laminar flow using stream function-vorticity formulation”, Int. J. Numer. Meth. Fluids, 46:8 (2004), 815–847 | DOI
[14] Saad Y., Numerical Methods for Large Eigenvalue Problems, SIAM, Philadelphia, 2011, xvi+276 pp. | DOI
[15] Fedorenko R. P., Vvedenie v vychislitel'nuiu fiziku [Introduction to Computational Physics], Moscow Institute of Physics and Technology, Moscow, 1994, 528 pp. (In Russian)
[16] Vorozhtsov E. V., Shapeev V. P., “A divergence-free method of collocations and least squares for the computation of incompressible fluid flows and its efficient implementation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 542–573 (In Russian) | DOI
[17] Belyaev V. A., “On the effective implementation and capabilities of the least-squares collocation method for solving second-order elliptic equations”, Vychisl. Meth. Prog. [Num. Meth. Prog.], 22:3 (2021), 211–229 (In Russian) | DOI
[18] Ortega J. M., Introduction to Parallel and Vector Solution of Linear Systems, Springer, New York, 1988, xi+305 pp. | DOI
[19] Karamyshev V. B., Kovenya V. M., Sleptsov A. G., Cherny S. G., “Variational method of accelerating linear iterations and its applications”, Comput. Fluids., 25:5 (1996), 467–484 | DOI
[20] Il'in V. P., Knysh D. V., “Parallel decomposition methods in the trace spaces”, Vychisl. Meth. Prog. [Num. Meth. Prog.], 12:1 (2011), 110–119 (In Russian)
[21] Tang J. M., Nabben R., Vuik C., Erlangga Y. A., “Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods”, J. Sci. Comput., 39:3 (2009), 340–370 | DOI
[22] Godunov S. K., Ryabenkii V. S, Difference Schemes: An Introduction to the Underlying Theory, Studies in Mathematics and its Applications, 19, North-Holland, Amsterdam, 1987, xvii+489 pp. | Zbl
[23] Demmel J. W., Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997, xi+416 pp. | DOI
[24] Sleptsov A. G., “Grid-projection solution of an elliptic problem for an irregular grid”, Russ. J. Numer. Anal. Math. Model., 8:6 (1993), 519–543 | DOI | Zbl
[25] Isaev V. I.,Shapeev V. P., “High-accuracy versions of the collocations and least squares method for the numerical solution of the Navier–Stokes equations”, Comput. Math. Math. Phys., 50:10 (2010), 1670–1681 | DOI
[26] Drozdov G. M., Shapeev V. P., “CAS application to the construction of high-order difference schemes for solving Poisson equation”, Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, 8660, eds. V. P. Gerdt, W. Koepf, W. M. Seiler, E. V. Vorozhtsov, Springer, Cham, 2014, 99–110 | DOI
[27] Golushko S. K., Nemirovskii Yu. V., Priamye i obratnye zadachi mekhaniki uprugikh kompozitnykh plastin i obolochek vrashcheniia [Direct and Inverse Problems in the Mechanics of Composite Plates and Shells], Fizmatlit, Moscow, 2008, 432 pp. (In Russian)
[28] Idimeshev S. V., Modified method of collocations and least residuals and its application in the mechanics of multilayer composite beams and plates, Thesis of Dissertation (Cand. Phys. Math. Sci.), Novosibirsk, 2016, 179 pp. (In Russian)