Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_3_a6, author = {G. B. Sizykh}, title = {General principle of maximum pressure in~stationary flows of~inviscid gas}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {544--555}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a6/} }
TY - JOUR AU - G. B. Sizykh TI - General principle of maximum pressure in~stationary flows of~inviscid gas JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 544 EP - 555 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a6/ LA - ru ID - VSGTU_2022_26_3_a6 ER -
%0 Journal Article %A G. B. Sizykh %T General principle of maximum pressure in~stationary flows of~inviscid gas %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 544-555 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a6/ %G ru %F VSGTU_2022_26_3_a6
G. B. Sizykh. General principle of maximum pressure in~stationary flows of~inviscid gas. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 544-555. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a6/
[1] Sedov L. I., A Course in Continuum Mechanics, v. 2, Physical Foundations and Formulations of Problems, Wolters-Noordhoff Publ., Groningen, 1971, xxi+309 pp. | Zbl
[2] Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, 1967, xviii+615 pp. | Zbl
[3] Loytsyansky L. G., Mechanics of Liquids and Gases, International Series of Monographs in Aeronautics and Astronautics, 6, Pergamon Press, Oxford, 1966, xii+804 pp.
[4] Vyshinsky V. V., Sizykh G. B., “The verification of the calculation of stationary subsonic flows and the presentation of the results”, Math. Models Comput. Simul., 11:1 (2019), 97–106 | DOI | Zbl
[5] Anikin V. A., Vyshinsky V. V., Pashkov O. A., Streltsov E. V., “Using the maximum pressure principle for verification of calculation of stationary subsonic flow”, Herald of the Bauman Moscow State Technical University, Ser. Mechanical Engineering, 2019, no. 6, 4–16 | DOI
[6] Vyshinsky V. V., Zoan K. T., “Numerical simulation of the flow around landscape fragments and solution verification”, TsAGI Science Journal, 51:6 (2020), 641–650 | DOI
[7] Airapetov A. B., Vyshinsky V. V., Katunin A. V., “On the verification of calculations of stationary subsonic flows around bluff bodies”, Uch. Zap. TsAGI, 52:1 (2021), 34–40 (In Russian)
[8] Vyshinsky V. V., Zoan K. T., “Aircraft aerodynamics in a disturbed atmosphere”, Proc. of MIPT, 13:2 (2021), 40–48 (In Russian) | DOI
[9] Vyshinsky V. V., Zoan K. T., “Atmospheric wind flow of mountain landscape in the surroundings of Danang airport and flight safety problems”, Civil Aviation High Technologies, 24:6 (2021), 27–41 (In Russian) | DOI
[10] Airapetov A. B., Vyshinsky V. V., Katunin A. V., “Flow around the span structures of the Adler airport bypass road and landing safety issues”, Uch. Zap. TsAGI, 52:6 (2021), 41–49 (In Russian)
[11] Vyshinsky V. V., Chinh D. C., “Study of aerodynamic characteristics of an aircraft during approach to landing in a disturbed atmosphere”, Vietnam J. Mech., 44:2 (2022), 133–152 | DOI
[12] Brutyan M. A., Vyshinsky V. V., Razdobarin A. M., “Application of criteria for independent verification of solutions to improve the numerical calculations quality”, Uch. Zap. TsAGI, 53:4 (2022), 26–32 (In Russian)
[13] Truesdell C., “Two measures of vorticity”, J. Rational Mech. Anal., 2:2 (1953), 173–217 | DOI | Zbl
[14] Hopf E., “Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus”, Sitzungsberichte der Preußischen Akademie der Wissenschaften, 19 (1927), 147–152 (In German) | Zbl
[15] Miranda C., Partial Differential Equations of Elliptic Type, Springer-Verlag, Berlin, Heidelberg, 1970, xii+370 pp. | DOI | Zbl
[16] Besportochny A. I., Burmistrov A. N., Sizykh G. B., “Version of the Hopf theorem”, Proc. of MIPT, 8:1 (2016), 115–122 (In Russian)
[17] Sizykh G. B., “System of orthogonal curvilinear coordinates on the isentropic surface behind a detached bow shock wave”, Fluid Dyn., 55:7 (2020), 899–903 | DOI | DOI
[18] Sizykh G. B., “Second integral generalization of the Crocco invariant for 3D flows behind detached bow shock wave”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021), 588–595 (In Russian) | DOI | Zbl
[19] Sizykh G. B., “Integral invariant of ideal gas flows behind a detached bow shock”, Fluid Dyn., 56:8 (2021), 1027–1030 | DOI | DOI | Zbl