On a $q$-analogue of the Sturm--Liouville operator with discontinuity conditions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 407-418

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a $q$-analogue of the Sturm–Liouville problem with discontinuity condition on a finite interval is studied. It is proved that the $q$-Sturm–Liouville problem with discontinuity conditions is self-adjoint in $L_q^2(0,\pi)$. The completeness theorem and the sampling theorem are proved.
Keywords: $q$-Sturm–Liouville operator, completeness of eigenfunctions, self-adjoint operato.
@article{VSGTU_2022_26_3_a0,
     author = {D. Karahan},
     title = {On a $q$-analogue of the {Sturm--Liouville} operator with discontinuity conditions},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {407--418},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a0/}
}
TY  - JOUR
AU  - D. Karahan
TI  - On a $q$-analogue of the Sturm--Liouville operator with discontinuity conditions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 407
EP  - 418
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a0/
LA  - en
ID  - VSGTU_2022_26_3_a0
ER  - 
%0 Journal Article
%A D. Karahan
%T On a $q$-analogue of the Sturm--Liouville operator with discontinuity conditions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 407-418
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a0/
%G en
%F VSGTU_2022_26_3_a0
D. Karahan. On a $q$-analogue of the Sturm--Liouville operator with discontinuity conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 407-418. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a0/