On a $q$-analogue of the Sturm--Liouville operator with discontinuity conditions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 407-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a $q$-analogue of the Sturm–Liouville problem with discontinuity condition on a finite interval is studied. It is proved that the $q$-Sturm–Liouville problem with discontinuity conditions is self-adjoint in $L_q^2(0,\pi)$. The completeness theorem and the sampling theorem are proved.
Keywords: $q$-Sturm–Liouville operator, completeness of eigenfunctions, self-adjoint operato.
@article{VSGTU_2022_26_3_a0,
     author = {D. Karahan},
     title = {On a $q$-analogue of the {Sturm--Liouville} operator with discontinuity conditions},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {407--418},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a0/}
}
TY  - JOUR
AU  - D. Karahan
TI  - On a $q$-analogue of the Sturm--Liouville operator with discontinuity conditions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 407
EP  - 418
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a0/
LA  - en
ID  - VSGTU_2022_26_3_a0
ER  - 
%0 Journal Article
%A D. Karahan
%T On a $q$-analogue of the Sturm--Liouville operator with discontinuity conditions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 407-418
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a0/
%G en
%F VSGTU_2022_26_3_a0
D. Karahan. On a $q$-analogue of the Sturm--Liouville operator with discontinuity conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 407-418. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a0/

[1] Jackson F. H., “$q$-Difference equations”, Am. J. Math., 32:4 (1910), 305–314 | DOI | Zbl

[2] Annaby M. H., Mansour Z. S., “Fractional $q$-difference equations”, $q$-Fractional Calculus and Equations, Lecture Notes in Mathematics, 2056, Springer, Berlin, Heidelberg, 2012, 223–270 | DOI

[3] Annaby M. H., Mansour Z. S., “Basic Sturm–Liouville problems”, J. Phys. A: Math. Gen., 38:17 (2005), 3775–3797 | DOI | Zbl

[4] Tuna H., Eryilmaz A., “Completeness of the system of root functions of $q$-analogue of Sturm–Liouville operators”, Math. Commun., 19:1 (2014), 65–73 | Zbl

[5] Bustoz J., Suslov S., “Basic analogues of Fourier series on a $q$-quadratic grid”, Math. Appl. Anal., 5:1 (1998), 1–38 | DOI | Zbl

[6] Annaby M. H., “$q$-Type sampling theorems”, Result. Math., 44:3–4 (2003), 214–225 | DOI | Zbl

[7] Abreu L. D., “A $q$-sampling theorem related to the $q$-Hankel transform”, Proc. Amer. Math. Soc., 133:4 (2005), 1197–1203 | DOI | Zbl

[8] Ismail M. E., Zayed A. I., “A $q$-analogue of the Whittaker–Shannon–Kotel'nikov sampling theorem”, Proc. Am. Math. Soc., 131:12 (2003), 3711–3719 | DOI | Zbl

[9] Abreu L. D, “Sampling theory associated with $q$-difference equations of the Sturm–Liouville type”, J. Phys. A: Math. Gen., 38:48 (2005), 10311–10319 | DOI | Zbl

[10] Annaby M. H., Mansour Z. S., “Asymptotic formulae for eigenvalues and eigenfunctions of $q$-analogue of Sturm–Liouville problems”, Math. Nachr., 284:4 (2011), 443–470 | DOI | Zbl

[11] Allahverdiev B. P., Tuna H., “Qualitative spectral analysis of singular $q$-analogue of Sturm–Liouville operators”, Bull. Malays. Math. Sci. Soc., 43:2 (2020), 1391–1402 | DOI | Zbl

[12] Allahverdiev B. P., Tuna H., “Eigenfunction expansion in the singular case for $q$-analogue of Sturm–Liouville operators”, Casp. J. Math. Sci., 8:2 (2019), 91-102 | DOI | Zbl

[13] Allahverdiev B. P., Tuna H., “Limit-point criteria for $q$-analogue of Sturm–Liouville equations”, Quest. Math., 42:10 (2019), 1291–1299 | DOI | Zbl

[14] Allahverdiev B. P., Tuna H., “An expansion theorem for $q$-analogue of Sturm–Liouville operators on the whole line”, Turk. J. Math., 42:3 (2018), 1060–1071 | DOI | Zbl

[15] Allahverdiev B. P., Tuna H., “Properties of the resolvent of singular $q$-Dirac operators”, Elec. J. Diff. Eq., 2020:3 (2020), 1–13 | Zbl

[16] Karahan D., Mamedov Kh. R., “On a $q$-boundary value problem with discontinuity conditions”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13:4 (2021), 5–12 | DOI | Zbl

[17] Huseynov H. M., Dostuyev F. Z., “On determination of Sturm–Liouville operator with discontinuity conditions with respect to spectral data”, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb., 42:2 (2016), 143–153 | Zbl

[18] Gasper G., Rahman M., Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, 35, Cambridge Univ. Press, Cambridge, 1990, xx+287 pp. | Zbl

[19] Kramer H. P., “A generalized sampling theory”, J. Math. Phys., 38 (1959), 68–72 | Zbl

[20] Yurko V. A., Introduction to the Theory of Inverse Spectral Problems, Fizmatlit, Moscow, 2007, 384 pp. (In Russian) | Zbl

[21] Chung K.-S., Chung W.-S., Nam S.-T., Kang H.-J., “New $q$-derivative and $q$-logarithm”, Int. J. Theor. Phys., 33:10 (1994), 2019–2029 | DOI | Zbl

[22] Floreanini R., Vinet L., “A model for the continuous $q$-ultraspherical polynomials”, J. Math. Phys., 36:7 (1995), 3800–3813 | DOI | Zbl

[23] Floreanini R., Vinet L., “More on the $q$-oscillator algebra and $q$-orthogonal polynomials”, J. Phys. A: Math. Gen., 28:10 (1995), L287–293 | DOI

[24] Al-Mdallal Q. M., “On the numerical solution of fractional Sturm–Liouville problems”, Int. J. Comp. Math., 87:12 (2010), 2837–2845 | DOI | Zbl

[25] Al-Mdallal Q. M., “An efficient method for solving fractional Sturm–Liouville problems”, Chaos, Solitons and Fractals, 40:1 (2009), 183–189 | DOI | Zbl