Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_2_a6, author = {E. I. Pon'kin}, title = {The characteristic {Cauchy} problem of standard form for~describing the outflow of a polytropic gas into vacuum from an obligue wall}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {322--338}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a6/} }
TY - JOUR AU - E. I. Pon'kin TI - The characteristic Cauchy problem of standard form for~describing the outflow of a polytropic gas into vacuum from an obligue wall JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 322 EP - 338 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a6/ LA - ru ID - VSGTU_2022_26_2_a6 ER -
%0 Journal Article %A E. I. Pon'kin %T The characteristic Cauchy problem of standard form for~describing the outflow of a polytropic gas into vacuum from an obligue wall %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 322-338 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a6/ %G ru %F VSGTU_2022_26_2_a6
E. I. Pon'kin. The characteristic Cauchy problem of standard form for~describing the outflow of a polytropic gas into vacuum from an obligue wall. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 322-338. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a6/
[1] Courant R., Hilbert D., Methods of Mathematical Physics, v. 2, Partial Differential Equations, John Wiley Sons, New York, London, 1962, xxii+830 pp. | Zbl
[2] Stanyukovich K. P., Unsteady motion of Continuous Media, Pergamon Press, London, 1960, xv+745 pp.
[3] Bautin S. P., Matematicheskoe modelirovanie sil'nogo szhatiia gaza [Mathematical Modeling of Strong Gas Compression], Nauka, Novosibirsk, 2007, 312 pp. (In Russian)
[4] Zababakhin E. I., Zababakhin I. E., Iavleniia neogranichennoi kumuliatsii [Phenomena of Unlimited Cumulation], Nauka, Moscow, 1988, 177 pp. (In Russian)
[5] Dolgoleva G. V., Zabrodin A. V., Kumuliatsiia energii v sloistykh sistemakh i realizatsiia bezudarnogo szhatiia [Energy Accumulation in Layered Systems and Implementation of Shockless Compression], Fizmatlit, Moscow, 2004, 69 pp. (In Russian)
[6] Bernstein L. A., Reactions on Excited States using the National Ignition Facility. Nuclear Astrophysics using NIF, Preprint No. UCRL PRES-233342, Lawrence Livermore Nat. Lab., Livermore, 2007
[7] Suchkov V. A., “Flow into a vacuum along an oblique wall”, J. Appl. Math. Mech., 27:4 (1963), 1132–1134 | DOI
[8] Sidorov A. F., “Some estimates for the degree of energy cumulation in two- and three-dimensional shockless compression of a gas”, Dokl. Math., 36:5 (1991), 347–349 | MR | Zbl
[9] Bautin S. P., Deryabin S. L., Matematicheskoe modelirovanie istecheniia ideal'nogo gaza v vakuum [Mathematical Modeling of Ideal Gas Flow into Vacuum], Nauka, Novosibirsk, 2005, 390 pp. (In Russian)
[10] Kubanova A. K., “On one form of analytical solution of gas outflow in a porous medium”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2003, no. 19, 38–41 (In Russian) | DOI
[11] Deryabin S. L., “One-dimension escape of self-gravitating ideal gas into vacuum”, Vychisl. Tekhnol. [Comput. Technol.], 8:4 (2003), 32–44 (In Russian) | Zbl
[12] Bautin S. P., Pon'kin E. I., “Self-similar solutions of the problem of polytropic gas flow along an oblique wall into vacuum”, J. Appl. Mech. Tech. Phys., 62:1 (2021), 32–40 | DOI | DOI
[13] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki [Lectures on the Fundamentals of Gas Dynamics], Inst. Comp. Studies, Moscow, Izhevsk, 2003, 335 pp. (In Russian)
[14] Bautin S. P., Kharakteristicheskaia zadachi Koshi i ee prilozheniia v gazovoi dinamike [Characteristic Cauchy Problem and its Applications in Gas Dynamics], Nauka, Novosibirsk, 2009, 368 pp. (In Russian)