Orientation nature of the damage-memory effect under triaxial cyclic nonproportional compression of~a~sandstone
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 293-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes the mechanisms and conditions for the damage-memory effect (Kaiser effect) in rocks subjected to a three-dimensional nonproportional cyclic loading with changes in the rocks' shape and orientation of the Lamé-ellipsoid. The experiments with the cubic samples taken from polymictic sandstone were conducted on Triaxial Independent Loading Testing System with continuous recording of an acoustic emission signals. The results of a nonproportional triaxial compression under the developed protocol, it is 9-cycle loading program, have shown that a dominate mechanism of the damage-memory effect in each ensemble of cracks (vectored differently) is the development of micro-cracks of opening fracture mode oriented subnormally to the minimum main stress. It was found that the Kaiser damage-memory effect is detected not so much to the fact of opening cracks, friendly oriented, as to a discrete growing (increase of length) of already existing and newly emerging micro-cracks. The obtained results can be considered as a trigger for models development oriented to strain and destruction of rocks, taking into account the anisotropic nature of damage accumulation.
Mots-clés : Kaiser effect, rotation of Lamé-ellipsoid, changes in Lamé-ellipsoid shape
Keywords: acoustic emission, true triaxial loading, nonproportional cyclic compression, orientation nature of the damage-memory effect.
@article{VSGTU_2022_26_2_a4,
     author = {I. A. Panteleev and A. V. Zaitsev and K. B. Ustinov and V. A. Mubassarova and N. I. Shevtsov and V. V. Khimulia and V. I. Karev and Yu. F. Kovalenko},
     title = {Orientation nature of the damage-memory effect under triaxial cyclic nonproportional compression of~a~sandstone},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {293--310},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a4/}
}
TY  - JOUR
AU  - I. A. Panteleev
AU  - A. V. Zaitsev
AU  - K. B. Ustinov
AU  - V. A. Mubassarova
AU  - N. I. Shevtsov
AU  - V. V. Khimulia
AU  - V. I. Karev
AU  - Yu. F. Kovalenko
TI  - Orientation nature of the damage-memory effect under triaxial cyclic nonproportional compression of~a~sandstone
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 293
EP  - 310
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a4/
LA  - ru
ID  - VSGTU_2022_26_2_a4
ER  - 
%0 Journal Article
%A I. A. Panteleev
%A A. V. Zaitsev
%A K. B. Ustinov
%A V. A. Mubassarova
%A N. I. Shevtsov
%A V. V. Khimulia
%A V. I. Karev
%A Yu. F. Kovalenko
%T Orientation nature of the damage-memory effect under triaxial cyclic nonproportional compression of~a~sandstone
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 293-310
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a4/
%G ru
%F VSGTU_2022_26_2_a4
I. A. Panteleev; A. V. Zaitsev; K. B. Ustinov; V. A. Mubassarova; N. I. Shevtsov; V. V. Khimulia; V. I. Karev; Yu. F. Kovalenko. Orientation nature of the damage-memory effect under triaxial cyclic nonproportional compression of~a~sandstone. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 293-310. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a4/

[1] Kaiser J., An Investigation into the Occurrence of Noises in Tensile Tests or a Study of Acoustic Phenomena in Tensile Tests, Ph.D. Thesis, Tech. Hosch. Munchen, Munich, Germany, 1950

[2] Holcomb D. J., Costin L. S., “Detecting damage surfaces in brittle materials using acoustic emissions”, J. Appl. Mech., 53:3 (1986), 536–544 | DOI

[3] Lockner D., “The role of acoustic emission in the study of rock fracture. International loading rates”, Mech. Materials, 33:11 (1993), 669–677

[4] Villaescusa E., Seto M., Baird G., “Stress measurements from oriented core”, Int. J. Rock Mech. Min. Sci, 39:5 (2002), 603–615 | DOI

[5] Zang A., Stephansson O., Stress Field of the Earth's Crust, Springer, Dordrecht, 2010, xix+324 pp. | DOI

[6] Lehtonen A., Cosgrove J. W., Hudson J. A., Johansson E., “An examination of in situ rock stress estimation using the Kaiser effect”, Eng. Geol., 124 (2012), 24–37 | DOI

[7] Heimisson E. R., Einarsson P., Sigmundsson F., Brandsdóttir B., “Kilometer‐scale Kaiser effect identified in Krafla volcano, Iceland”, Geophys. Res. Lett., 42:19 (2015), 7958–7965 | DOI

[8] Rasskazov M. I., Tereshkin A. A., Tsoi D. I., “Estimate of the stress-strain state of the rock mass in the pioner deposit based on acoustic emission memory effect of rocks”, Problems of Subsoil Use, 2019, no. 2(21), 62–67 (In Russian) | DOI

[9] Belyutyukov N. L., “Features of Kaiser effect use to estimate stress state of the rock mass”, Gornoe Ekho, 2019, no. 3(76), 24–31 (In Russian) | DOI

[10] Shkuratnik V. L., Nikolenko P. V., “About using the Kaiser effect in epoxy resin with quartz filler to estimate stresses in the rock mass”, Mining Informational and Analytical Bulletin, 2012, no. S1, 97–104 (In Russian)

[11] Nikolenko P. V., Shkuratnik V. L., Chepur M. D. Koshelev A. E., “Using the Kaiser effect in composites for stressed rock mass control”, J. Min. Sci., 54:1 (2018), 21–26 | DOI | DOI

[12] Shkuratnik V. L., Nikolenko P. V., “Spectral characteristics of acoustic emission in carbon fiber-reinforced composite materials subjected to cyclic loading”, Adv. Mat. Sci. Eng., 2018, 1962679 | DOI

[13] Kilburn C., “Precursory deformation and fracture before brittle rock failure and potential application to volcanic unrest”, J. Geophys. Res., 117:B2 (2012), B02211 | DOI

[14] Faulkner D. R., Mitchell T. M., Healy D., Heap M. J., “Slip on ‘weak’ faults by the rotation of regional stress in the fracture damage zone”, Nature, 444:7121 (2006), 922–925 | DOI

[15] Gudmundsson A., Philipp S. L., “How local stress fields prevent volcanic eruptions”, J. Volcanol. Geotherm. Res., 2006, no. 158, 257–268 | DOI

[16] Karaoğlu Ö., Browning J., Bazargan M., Gudmundsson A., “Numerical modelling of triple-junction tectonics at Karlova, Eastern Turkey, with implications for regional magma transport”, Earth Planet. Sci. Lett., 2016, no. 452, 157–170 | DOI

[17] Lavrov A. V., “The Kaiser effect in rocks: principles and stress estimation techniques”, Int. J. Rock Mech. Min. Sci., 40:2 (2003), 151–171 | DOI

[18] Lavrov A., Vervoort A., Wevers M., Napier J. A. L., “Experimental and numerical study of the Kaiser effect in cyclic Brazilian tests with disk rotation”, Int. J. Rock Mech. Min. Sci., 39:3 (2002), 287–302 | DOI

[19] Chen Z. H., Tham L. G., Xie H., “Experimental and numerical study of the directional dependency of the Kaiser effect in granite”, Int. J. Rock Mech. Min. Sci., 44:7 (2007), 1053–1061 | DOI

[20] Li C., Nordlund E., “Experimental verification of the Kaiser effect in rocks”, Rock Mech. Rock Engng., 26:4 (1993), 333–351 | DOI

[21] Pestman B. J., Van Munster J. G., “An acoustic emission study of damage development and stress-memory effects in sandstone”, Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 33:6 (1996), 585–593 | DOI

[22] Pestman B. J., Kenter C. J., Van Munster J. G., “Estimation of in-situ stress magnitudes from measurements on cores” (Trondheim, Norway, July 1998), SPE/ISRM Rock Mechanics in Petroleum Engineering, 1998, SPE-47239-MS | DOI

[23] Pestman B. J., Holt R. M., Kenter C. J., Van Munster J. G., “Field application of a novel core-based in-situ stress estimation technique” (Irving, Texas, October 2002), SPE/ISRM Rock Mechanics Conference, 2002, SPE-78158-MS | DOI

[24] Shkuratnik V. L., Lavrov A. V., Effekty pamiati v gornykh porodakh. Fizicheskie zakonomernosti, teoreticheskie modeli [Memory Effects in Rocks. Physical Laws, Theoretical Models], Akad. Gornykh Nauk, Moscow, 1997, 159 pp. (In Russian)

[25] Lavrov A. V., Shkuratnik V. L., Filimonov Yu. L., Akustoemissionnyi effekt pamiati v gornykh porodakh [Acoustic Emission Memory Effect in Rocks], Moscow State Mining University, Moscow, 2004, 456 pp. (In Russian)

[26] Browning J., Meredith P. G., Stuart C. E., Healy D., Harland S., Mitchell T. M., “Acoustic characterization of crack damage evolution insandstone deformed under conventional and true triaxial loading”, J. Geophys. Res. Solid Earth, 122:6 (2017), 4395–4412 | DOI

[27] Browning J., Meredith P. G., Stuart C., Harland S., Healy D., Mitchell T. M., “A directional crack damage memory effect in sandstone under true triaxial loading”, Geophys. Res. Lett., 45:14 (2018), 6878–6886 | DOI

[28] Karev V. I., Klimov D. M., Kovalenko Yu. F., Ustinov K. B., “Fracture of sedimentary rocks under a complex triaxial stress state”, Mech. Solids, 51:5 (2016), 522–526 | DOI

[29] Klimov D. M., Karev V. I., Kovalenko Yu. F., “Experimental study of the influence of a triaxial stress state with unequal components on rock permeability”, Mech. Solids, 50:6 (2015), 633–640 | DOI

[30] Shevtsov N., Zaitsev A., Panteleev I., “Deformation and destruction of rocks on the true triaxial loading system with continuous acoustic emission registration”, Physical and Mathematical Modeling of Earth and Environment Processes, Springer, Cham, 2019, 424–432 | DOI

[31] Panteleev I. A., Mubassarova V. A., Zaitsev A. V., Shevtsov N. I., Kovalenko Yu. F., Karev V. I., “Kaiser effect in sandstone in polyaxial compression with multistage rotation of an assigned stress ellipsoid”, J. Min. Sci., 56:3 (2020), 370–377 | DOI | DOI

[32] Panteleev I. A., Mubassarova V. A., Zaitsev A. V., Karev V. I., Kovalenko Yu. F., Ustinov K. B., Shevtsov N. I., “The Kaiser effect under multiaxial nonproportional compression of sandstone”, Dokl. Phys., 65:11 (2020), 396–399 | DOI | DOI

[33] Shevtsov N. I., Zaitsev A. V., Panteleev I. A., “Studying the relationship between the stress-strain state of the rock mass and acoustic emission flux using triaxial independent loading test system”, Protsessy v geosredakh, 2019, no. 1(19), 129–136 (In Russian)

[34] Panteleev I. A., Kovalenko Yu. F., Sidorin Yu. V., Zaitsev A. V., Karev V. I., Ustinov K. B., Shevtsov N. I., “Damage evolution under complex nonuniform compression of sandstone according to acoustic emission data”, Phys. Mesomech., 22:4 (2019), 56–63 (In Russian) | DOI

[35] Healy D., Blenkinsop T. G., Timms N. E., Meredith P. G., Mitchell T. M., Cooke M. L., “Polymodal faulting: Time for a new angle on shear failure”, J. Struct. Geol., 80 (2015), 57–71 | DOI

[36] Panteleev I., Lyakhovsky V., Browning J., Meredith P. G., Healy D., Mitchell T. M., “Non-linear anisotropic damage rheology model: Theory and experimental verification”, Eur. J. Mech., A/Solids, 85 (2021), 104085 | DOI

[37] Lyakhovsky V., Panteleev I., Shalev E., Browning J., Mitchell T. M., Healy D., Meredith P. G., “A new anisotropic poroelasticity model to describe damage accumulation during cyclic triaxial loading of rock”, Geophys. J. Int., 230:1 (2022), 179–201 | DOI